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Abstract

We study a general screening model that encompasses the problem facing a price-
setting insurer offering vertically differentiated contracts to consumers with multiple
dimensions of private information. We show how even with minimal assumptions
on consumer valuations and costs, progress can be made to understand the solution
in two ways. First, we derive conditions that any optimal menu must satisfy, and
show how they can be used to shed light on insurer incentives. Second, we propose
a tractable method to approximate the solution, and show how the quality of the
approximation can be ex-post evaluated in any practical application. Applying our
method empirically in the context of health insurance, we find that the approximation
comes within one percent of the true solution. We illustrate the usefulness of the
approximation for understanding the solution graphically as well as for numerically
evaluating optimal policy interventions in a monopoly market. Our analysis highlights
the importance of strategic insurer responses and endogenous contract characteristics
in evaluating the effects of policy in these markets.

JEL: I11, C26, I13

∗We are grateful to Zack Cooper, Stuart Craig, Michael Dickstein, David Dranove, Eilidh Geddes, Ben
Handel, Kate Ho, Amanda Kowalski, Tim Layton, Ilse Lindenlaub, Neale Mahoney, Alessandro Pavan, Rob
Porter, Mike Powell, Mark Shepard, Ashley Swanson, Ben Vatter, Mike Whinston and seminar participants
at Northwestern, the Utah Winter Business Economics Conference, Stanford, UCLA, Paris School of Eco-
nomics, Michigan State, Penn, the NBER IO program, University of Nevada-Reno, Arizona State, Karl-
sruhe, HSBC Business School, and Penn State for their helpful comments. Chade: hector.chade@asu.edu,
Arizona State University; Marone: marone@utexas.edu, University of Texas at Austin and NBER; Starc:
amanda.starc@kellogg.northwestern.edu, The Kellogg School of Management, Northwestern University, and NBER;
Swinkels: j-swinkels@kellogg.northwestern.edu, The Kellogg School of Management, Northwestern University.

mailto:hector.chade@asu.edu
mailto:marone@utexas.edu
mailto:amanda.starc@kellogg.northwestern.edu
mailto:j-swinkles@kellogg.northwestern.edu


1 Introduction

Asymmetric information is central to our understanding of major sectors of the economy. Reg-

ulators oversee firms that have private information about costs and consumer tastes. Investors

evaluate entrepreneurs with differing abilities and project qualities. And in a particularly crit-

ical sector, health insurers sell insurance contracts to consumers who know both their health

status and their taste for insurance. In each of these settings, agents hold multiple important

dimensions of private information, and the space of possible contracts across which they can be

screened is potentially vast. Until recently, however, the majority of both theoretical and empir-

ical papers on screening have either considered a one-dimensional hidden information problem

(e.g., Rothschild and Stiglitz, 1976; Stiglitz, 1977), or else a multidimensional problem with a

highly restricted contract space (e.g., Einav et al., 2010a; Veiga and Weyl, 2016).

One reason for this dearth of evidence is, of course, that screening problems become substan-

tially less tractable with both multidimensional agents and endogenous characteristics across

many potential products. Since Wilson (1993), theorists have attempted to characterize optima

of multidimensional screening models of this type. But despite being a natural and highly rele-

vant generalization of the single-dimensional agent case, sufficient conditions for optimality have

proved elusive. Existing results rely on assumptions imposed on consumer utility as a function

of their type and allocation. Unfortunately, these assumptions fail in many applied settings. In

health insurance, for example, the utility function is derived from the certainty equivalent of a

lottery over health outcomes, which is not likely to have the relevant properties.1 As a result,

once one takes seriously both that consumers can vary along several private dimensions and

that insurers may offer new contracts in response to this heterogeneity, we have only a limited

understanding of optimal menus in these markets.

This paper asks what can be learned about the solution to multidimensional screening problems

that are sufficiently general to accommodate real-world applications. We make progress on two

fronts. First, we derive intuitive necessary conditions for a solution in a setting with only minimal

assumptions on primitive objects. We show how these conditions can nonetheless be used to

derive interesting properties of the solution. Second, we provide a highly tractable method with

which the solution can be approximated, and show how the quality of the approximation can be

ex-post evaluated in any practical application. We view this latter approach as a tool that may

be especially useful for applied researchers in this area. Indeed, menu design in health insurance

markets is a topic on which the progress of empirical analysis appears to have outpaced theoretical

advancement.2 While endogenous determination of contract characteristics has been recognized

as a centrally important force, applied researchers must often abstract from it in order to make

empirical progress. Our approach accommodates this force, permitting tractable analysis in

settings that have traditionally been considered prohibitively complex.

1The standard simplifying assumption in the theoretical literature is that consumers’ valuation of product quality
or quantity exhibits a single crossing with respect to consumer type. This assumption is rejected by standard
parameterizations and estimates of consumer demand in health insurance markets (Marone and Sabety, 2022).

2As noted by Einav and Finkelstein (2011a) (and emphasized by Veiga and Weyl, 2016), “On the theoretical front,
we currently lack clear characterizations of the equilibrium in a market in which firms compete over contract
dimensions as well as price, and in which consumers may have multiple dimensions of private information.”
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Our model is as follows. An insurer faces a population of consumers who have private informa-

tion about their risk aversion, distribution of health states, and taste for healthcare utilization.

The insurer designs a menu of vertically differentiated insurance contracts, where each contract

has a premium and an out-of-pocket cost function that dictates the extent of coverage for dif-

ferent levels of healthcare utilization. The consumer’s outside option is an exogenous base level

of coverage provided by the government (which may be no coverage). The insurer’s payoff is

a weighted average of consumer surplus, profits, and government spending. Our model thus

subsumes a range of cases, from a monopolist insurer to a utilitarian social planner. The timing

is as follows. The insurer offers a menu of contracts. Consumers observe the menu, learn their

type, and choose a contract. Consumers then privately learn their health state and choose their

healthcare utilization.

We begin by deriving conditions that any optimal menu must satisfy. The key assumption

required is that consumer utility exhibits single crossing with respect to contract quality and

some dimension of the consumer’s type. There are no restriction on the interaction between

consumer utility and all remaining dimensions of consumers’ private information. We then show

how these necessary conditions can be used to establish properties of the solution, related to the

insurers’ incentive to screen and exclude consumers as well as the existence of positive trade in

the market. The flexibility of our model with respect to the insurer’s objective function also

permits comparative statics along this dimension. We show that an insurer aiming to maximize

social surplus (a planner) will generically exclude fewer consumers than an insurer maximizing

only producer surplus (a monopolist).3

While our necessary conditions provide useful extensions of standard screening results to a

multidimensional setting, the problem lacks sufficient structure to allow full characterization.

Following Wilson (1993), we make progress through a novel application of the “demand pro-

file” approach. The approach relies on a reinterpretation of the problem. Instead of setting the

premium of each contract, suppose the insurer instead sets the incremental premium of each

incremental level of coverage. A full premium schedule can then be reverse engineered, accu-

mulating over all optimal incremental premiums. Recast in this way, the insurer’s problem may

fully “decouple,” in the sense that the optimality condition for each incremental premium is

independent of all other increments. Decoupling substantially simplifies analysis of the problem,

yielding a potentially powerful tool for exploring its properties.

This approach relies critically on an enumerable set of incremental coverage levels, and thus on

a fixed and finite set of possible contracts. Before proceeding, we therefore first establish a novel

link between two key versions of the menu design problem: (i) the base case, in which the insurer

can offer a continuum of contracts, in principle achieving full separation across types (Stiglitz

(1977), Mussa and Rosen (1978)),Maskin and Riley (1984)); and (ii) the case in which the insurer

is restricted to offering a fixed and finite set of contracts, on which it simply sets prices. In the

3For clarity with respect to the application, we state the model in the health insurance context. More generally,
the analysis applies to a setting in which consumers with a multidimensional type derives utility from consuming
a good of different qualities (or quantities). A single firm supplies the good, at cost that depends on the good’s
quality and can as well depend on the consumer’s type. Both value and cost are increasing in quality, and satisfy
a suitable single-crossing property in the good’s quality and in one of the dimensions of type. The firm chooses
an optimal price schedule, which specifies a price for each level of quality.
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latter case, there may be at a minimum simply one fixed contract plus an outside option, as

in Akerlof (1970) and Einav et al. (2010a). We show that as the number of fixed contracts

increases, an insurer’s optimal payoff—as well as the associated price schedule and allocation—

converges to its counterpart in the continuum case. This result provides an important missing

link between settings in which product characteristics are “fully endogenous” (the continuum

case) and settings in which product characteristics are pre-specified. As long as firms can offer

a sufficiently large number of contracts, these two versions of the problem are not distinct. The

characteristics of traded contracts are endogenous in either case.

Proceeding with a fixed set of contracts, the critical questions then become when the insurer’s

problem will fully decouple, and if it does not, how close will the reverse engineered solution

be to the true solution? The key to understanding these questions is the relationship between

the optimal price schedule and consumer demand. The problem will fully decouple only if all

consumers’ payoffs are quasiconcave in coverage level under the optimal price schedule. With

quasiconcave payoffs, consumers will only consume incremental coverage up to the point at which

its incremental value becomes negative. When anticipating consumers’ choices, one therefore

needs only to check local incentive constraints. In contrast, under a price schedule that does not

uniformly induce quasiconcavity, checking local incentive constraints would be insufficient. In

such case, the demand profile approach—which by its nature checks only local constraints—may

incorrectly anticipate consumers’ choices, yielding a non-optimal solution.

The degree to which the demand-profile solution is non-optimal will depend on two things:

(i) for how many consumers was the optimal choice incorrectly anticipated, and (ii) how much

damage did these deviations do the insurer’s payoff? As discussed in Deneckere and Severinov

(2017), it is difficult to answer these questions analytically, or even to draw general conclusions

about them based on assumptions on primitives. Optimal price schedules are equilibrium objects

that depend on the distribution of consumer preferences and costs in the market, something that

becomes substantially complex when consumers are multidimensional. The observation we make

in this paper, however, is that it is straightforward to answer these questions ex post in any

practical application.

We use this observation propose a method to applied researchers for approximating the solution

to multidimensional screening problems with vertically differentiated products. The key choice

variable is how many products to use to span the relevant contract space. In the health insurance

context, this might be a range of coverage levels between no insurance and full insurance. The

demand-profile solution will be more likely to approximate the true solution if there are fewer

potential products. Indeed, if there are just two products, any price schedule will trivially induce

quasiconcave payoffs for all consumers, since each consumer’s payoff function contains only two

points. Using more contracts, on the other hand, will more fully capture the limiting environment

in which product characteristics are fully endogenous, but will introduce more possibilities for

price schedules to violate quasiconcavity. We provide a procedure that aids applied researchers

in approaching this trade-off in a principled fashion.

If the approximation is of acceptable quality in the setting of interest, it provides two valu-

able contributions. First, the applied researcher can use the approximation to solve an optimal
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delegation problem, where an insurer’s optimal menu must be evaluated within an inner loop

of an optimization routine. Evaluating a social planner’s optimal tax on a monopolist insurer,

for example, would require such a routine.4 The second contribution of our approximation ap-

proach is to shed light on the solution to the problem by way of a graphical framework, in the

spirit of Einav et al. (2010a). Whereas Einav et al. restricted the insurer to offering only two

contracts, this paper provides the conditions under which it can be applied with any number of

vertically-ordered contracts, as well as the caveats necessary when these conditions are not met.

The demand-profile approach lends itself directly to graphical analysis because the problem can

be solved separately on each incremental level of coverage. Intuitively, equilibrium outcomes at

each increment depend on the demand curves for incremental coverage, the associated marginal

revenue curves, and the marginal cost of providing incremental coverage. A monopolist sets

marginal cost equal to marginal revenue, while a utilitarian planner sets marginal cost equal

to price. A planner with an excess cost of public funds sets marginal cost equal to a weighted

average of marginal revenue and price.

We then study the health insurance menu design problem numerically using a simulated popu-

lation of consumers calibrated to match demographics of the under-65 US population and param-

eter estimates from Marone and Sabety (2022). Our analysis allows for a flexible and empirically

grounded distribution of consumer types. We implement the model using a finite set of piece-

wise linear and concave insurance contracts. We maintain that the government provides a base

level of coverage at a $10,000 deductible-only contract, and that the government covers the cost

associated with base coverage regardless of what coverage level a consumer selects.

We first show that convergence in the density of the contract space is remarkably fast. In our

setting, the insurer can capture over 98 percent of the available payoff with as few as five contracts.

Using five potential contracts, we then solve for the optimal menu that would be offered by a social

planner, a social planner facing an excess cost of public funds, and a monopolist. Consistent with

the analytical results derived from the necessary conditions, we find that a monopolist insurer

excludes substantially more consumers than a social planner facing no excess cost of funds.

Likewise, the monopolist screens more than the social planner, separating consumers across a

range of coverage levels, and ultimately offering much less coverage overall. The monopolist’s

optimal menu reduces social welfare by $743 per household per year (equal to 7 percent of

household average total healthcare spending) relative to what can be achieved by the planner.

As the cost of public funds rises, however, losses in the market becomes more costly for the

planner, and it begins acting more like the monopolist.

We then evaluate the quasiconcavity conditions under which the demand-profile approach

approximates the true problem. We find that for our three focal insurers (planner, planner

with excess cost of funds, monopolist), the optimal premium schedules of both the true and

simplified versions of the problem are consistent with quasiconcavity for 100 percent, 91 percent,

4As a monopolist can strategically respond to the tax, finding the optimal tax requires finding a fixed point.
Under any proposed tax, solving for the monopolist’s optimal response under the true multidimensional screening
problem could take hours of computational time. Solving for an optimal tax vector in an outer loop would
therefore be all but impossible in finite time (at least at current computing speeds). Evaluating the monopolist’s
approximate best response, however, would be nearly instantaneous, allowing such an analysis to proceed.
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and 96 percent of consumers, respectively. Because quasiconcavity violations occur for only a

small number of consumers, the solutions derived using the demand-profile approach are not

meaningfully different from the true solutions. For each type of insurer, the payoff from solving

the simplified problem agrees with the payoff from solving the true problem within a margin of

1 percent.

Finally, we use our framework to explore how a regulator might best intervene on behalf of

consumers in a monopoly market. Here, reasoning in terms of incremental coverage levels is

useful for two reasons. First, we show how it is possible to gain intuition about the impacts

of pricing regulation in a setting where the characteristics of traded contracts are endogenous.

Just as in a setting with two contracts, our graphical analysis can be used to visually evaluate

the impacts of regulatory intervention. Second, we show how our approach makes it feasible to

compute counterfactual equilibria in which a regulator optimizes over a policy tool to which the

insurer strategically responds. By eliminating calls to a nested optimization problem without

a closed-form solution, we can analyze strategic reactions to alternative regulations. Though

our quantitative results are of course specific to our numerical setting, our analysis illustrates

the usefulness of the simplified problem as a pragmatic approach to deriving novel insights in

multidimensional screening problems.

Our paper is related to a large empirical literature on health insurance as well as an exten-

sive theoretical literature on screening. With respect to the empirical literature, our model of

consumer demand for health insurance builds on a workhorse introduced by Cardon and Hen-

del (2001), which has been used in several subsequent papers (for example, Einav et al., 2013;

Azevedo and Gottlieb, 2017; Ho and Lee, 2021; Marone and Sabety, 2022). We enrich the model

to allow a unified treatment of insurers with differing objective functions. Our graphical analysis

of the insurer’s problem builds on the foundational framework in Einav et al. (2010b), who focus

on competitive markets and two potential contracts. A central contribution of our paper is to

show under what conditions this approach can be extended to an arbitrary number of contracts.

Our focus on health insurance menu design for multidimensional consumers is also closely related

to recent work by Marone and Sabety (2022) and Ho and Lee (2021), who each solve for the

optimal menus of contracts that would be offered by a utilitarian planner in their respective

empirical settings. We build on these findings by asking to what extent various features of those

solutions will hold in general, and how optimal menus would change with the insurer objective

function.

Our theoretical approach is related to the seminal works by Stiglitz (1977) (insurance), Mussa

and Rosen (1978) (quality provision), and Maskin and Riley (1984) (quantity provision). These

papers similarly analyze a principal-agent problem with private information, but consider only

one-dimensional private information. There is a subsequent important literature on screening

with multidimensional private information, including Wilson (1993), Armstrong (1996), Rochet

and Choné (1998), and Manelli and Vincent (2006), which has been surveyed by Rochet and

Stole (2003).5 There is also a recent theoretical literature on competitive markets with mul-

5Our class of problems belongs to Section 5 of Rochet and Stole (2003), which they call “the one-dimensional
instrument” case. An early contribution to this class is the parametric example solved in Laffont et al. (1987),
which is a special case of our general formulation. More recently, Deneckere and Severinov (2017) provide a solution
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tidimensional private information, such as Azevedo and Gottlieb (2017), who provide a new

equilibrium concept in settings with adverse selection, and Farinha Luz et al. (2022), who focus

on risk classification. Insurers in these papers are price-takers, while the insurer in our setting is a

price-setter. In a recent independent contribution, Gottlieb and Moreira (2023) analyze optimal

monopoly insurance with multidimensional types. They too derive an optimal exclusion result

under permissive primitives, but only with binary losses. Moreover, they show that competitive

firms provide less coverage than monopoly for those who have a higher willingness to pay for

coverage. The two papers complement one another nicely with respect to properties of optimal

menus with market power.

Our approximation method relies on the pioneering work of Wilson (1993), which focused on

nonlinear pricing in a setting without common values (that is, without selection). While this

approach has been used in a number of theoretical contexts, there are few tests of its applicability

in real-world settings.6 Our finding that this approach provides an excellent approximation to

the true multidimensional screening problem in health insurance markets presents a promising

avenue for new theoretical and empirical exploration.

The paper has distinct theoretical and numerical analyses, which are targeted to different

groups of readers. It is organized as follows. Section 2 describes the model. Sections 3.1 and 3

present theoretical results, including the optimality conditions and convergence. These sections

can be skipped by the applied reader without loss of continuity. Section 4 presents the simplified

reformulation of the problem and the graphical analysis. In Section 5, we discuss our numerical

application, solve for the optimal menus under different insurer objectives, and apply our analysis

to evaluate the impact of regulatory intervention. Section 6 concludes.

2 The Model

We consider a model of a health insurance market in which an insurer chooses a set of verti-

cally ordered contracts to offer and their associated premiums. Heterogeneous consumers then

select a single contract, incur health shocks, and choose their subsequent healthcare utilization.

Consumers have multidimensional private information at the time they choose an insurance con-

tract. Realized health is also private information, allowing for moral hazard and selection on

moral hazard in the sense of Einav et al. (2013). The government may provide a base level of

insurance coverage to all consumers.

While our application is to health insurance, our model is a general workhorse for settings

with multidimensional screening. To help the reader who is more interested in the application,

we separate much of our discussion of the technical contributions into “Technical Remarks” and

footnotes. These can be skipped without loss of continuity.

The Consumer. There is a strictly risk-averse consumer (or a continuum thereof). She has

for a class of problems with two-dimensional private information, and Veiga and Weyl (2016) characterize the
solution to a problem very similar to ours, but in which the insurer is limited to offering just one contract.

6One recent example is Gaynor et al. (2023), who use the demand profile approach to finding the optimal nonlinear
reimbursement contract to offer healthcare providers.
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CARA preferences, and is privately informed about her taste for healthcare utilization ω, her

coefficient of absolute risk aversion ψ, and her distribution F over potential health states l, which

has density f on bounded support [0, l̄].7 We denote the consumer’s type by θ = (ω, ψ, F ). The

distribution of θ is given by a joint cdf G on Θ = [0, ω̄] × [0, ψ̄] ×∆([0, l̄]). The support of G is

some rectangular subset suppG = [ω, ω̄]× [ψ, ψ̄]×F of Θ.8 We assume that G has a continuous

density function g.9 For convenience, we assume there are F and F ∈ F such that each F in F
first-order-stochastically dominates F and is first-order-stochastically dominated by F̄ . That is,

there is an unambiguously sickest and healthiest type in the population. It is convenient in what

follows to assume that F has a finite-dimensional parametrization F̃ (·|t), where t ∈ [0, 1]n, and

where for reasons we will discuss later, F̃ (·|t) is strictly MLRP increasing in the first coordinate

of t. Thus, F is the collection of all the F̃ (·|t)’s as t varies, and we can as is convenient work

with G or with an equivalent measure G̃ on [0, ω̄ × [0, ψ̄]× [0, 1]n.10

If the consumer chooses a dollar amount a ∈ [0, ā] of healthcare utilization (“spending”) when

her health state is l and her taste for healthcare is ω, then she enjoys a utility level which in

dollar terms is given by b(a, l, ω), where b is twice-continuously differentiable, strictly decreasing

in l and strictly increasing in a.11 That is, an agent is hurt by a worse health outcome, but is

helped by more healthcare spending. We assume baa < 0, baω > 0 and bal > 0, such that the

consumer has declining marginal utility for healthcare, but that marginal utility is higher when

she has either worse health or a higher taste for healthcare.12 A canonical example introduced

by Einav et al. (2013) is b(a, l, ω) = (a− l)− (1/(2ω))(a− l)2, which satisfies all the assumptions

for a ≥ l. This example belongs to a class of b functions b(a, l, ω) = b̂(a− l, ω), with b̂ increasing

in a− l.

Insurance Contracts. An insurance contract consists of an out-of-pocket cost function that

specifies how much the consumer pays for different levels of healthcare spending. There is an

exogenously given set of potential contracts, indexed by a scalar x ∈ [0, 1]. If a consumer chooses

a contract x and healthcare spending level a, then her out-of-pocket cost is c(a, x). We take c

to be twice-continuously differentiable for almost all (a, x), with 0 ≤ ca ≤ 1, caa ≤ 0, cx ≤ 0

for a > 0, and cax < 0.13 That is, out-of-pocket costs are increasing and concave in the level of

healthcare spending, and as x increases, the out-of-pocket cost function gets lower and shallower

as a function of a. Contracts are thus vertically differentiated, with higher x corresponding to

higher coverage.14

7For the numerical exercises, we will take l unbounded and with an atom where the agent wants no healthcare.
The formal analysis can accommodate these, but at the cost of more notation and less transparent analysis.

8Whenever we talk about ∆([0, l̄]), we implicitly endow it with the topology of weak convergence.
9We will abuse notation by also denoting by G and g several conditional and marginal distributions and densities.
10That is, there is G̃ a joint cdf on [0, ω̄]× [0, ψ̄]× [0, 1]n with density g̃ such that for all Y ⊂ [0, ω̄]× [0, ψ̄]×∆([0, l̄]),

we have G(Y ) = G̃{(ω, ψ, t)|(ω, ψ, F̃ (·|t)) ∈ Y )}.
11We use increasing and decreasing in the weak sense of nondecreasing and nonincreasing, adding “strictly” when

needed, and similarly with positive and negative, and concave and convex. Also, for any function f and argument
x of f , we write (f)x for the total derivative of f with respect to x. We use the symbol =s to indicate that the
objects on either side have strictly the same sign.

12We in fact only need these conditions to hold for a and l such that ba(a, l, ω) ∈ [0, 1], because in our environment
the consumer will optimally choose such an a given l and ω.

13We allow ourselves to consider cases with cax = 0 in our numerical exercise. Theoretically, this is tractable but
creates technical complications without economic insight.

14Both concavity and monotonicity of out-of-pocket cost functions are natural properties of health insurance
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Optimal Choice of Healthcare Spending. Given a contract x, a health state realization

l, and taste for healthcare utilization ω, the consumer chooses an optimal level of healthcare

spending a. Let a∗(l, x, ω) ≡ arg maxa∈[0,ā](b(a, l, ω)− c(a, x)) be that optimum.15 Let

(1) z(l, x, ω) ≡ b(a∗(l, x, ω), l, ω)− c(a∗(l, x, ω), x)

be the consumer’s income-equivalent payoff given (l, x, ω).

Optimal Choice of Insurance Contract. Let y be the initial wealth of the consumer.

Since the consumer has CARA preferences, we can usefully simplify her problem by express-

ing her preferences in certainty-equivalent units. Consider a consumer of type θ who chooses

contract x with premium p and out-of-pocket cost function c(·, x). Her expected utility is∫ (
−e−ψ(y−p+z(l,x,ω)

)
dF (l), which has certainty equivalent y − p+ v(x, θ), where

(2) v(x, θ) ≡ − 1

ψ
log

∫
e−ψz(l,x,ω)dF (l).

For any two contracts x and x′, the consumer’s willingness to pay for the discrete jump from x

to x′ is given by v(x′, θ)− v(x, θ), while her marginal willingness to pay for incremental coverage

is given by vx(·, θ). Faced with a menu of (x, p) pairs, the consumer chooses the contract that

maximizes the difference between the dollar value of her health activity v(x, θ) and the premium.

The Government. The government exogenously provides a base level of insurance x0 ∈ [0, 1].

If the consumer chooses healthcare spending level a, the cost to the government is k(a, x0) =

a− c(a, x0).

The Insurer. The insurer is risk neutral and is a price-setter. Depending on the economic

context, the insurer might be a monopolist, a social planner, or a firm designing insurance for its

workers. Our model is flexible enough to cover all of these cases. The insurer chooses a premium

schedule ρ specifying a premium ρ(x) for each insurance contract.

We assume that ρ is left continuous in x, which will ensure that the consumer always has an

optimal choice of insurance contract.16 Without loss of generality, we take ρ to be increasing,

since the consumer will never choose a contract for which some higher coverage level is available

at a weakly lower premium. Let P be the set of such premium schedules. To reflect that the

consumer always has an option of taking the government-provided insurance level x0, we require

that ρ(x0) = 0.

The insurer also makes a recommendation χ(θ) of insurance contract to each type θ. A menu

(ρ, χ) is incentive compatible if and only if, for all θ,

(IC) χ(θ) ∈ arg max
x∈[0,1]

(
v(x, θ)− ρ(x)

)

contracts (see e.g., Zeckhauser, 1970).
15The notation is justified since, under our assumptions, a∗(·, x, ω) is unique for almost all l, and so, since F is

atomless, it is irrelevant which optimal a is chosen when there is more than one such optimum.
16This follows since v(·, θ) is continuous and since ρ left continuous implies that −ρ is upper semicontinuous.
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If the consumer chooses contract x and healthcare spending a, then the cost to the insurer

is k(a, x) − k(a, x0), reflecting that the first k(a, x0) of healthcare spending is covered by the

government. We therefore implement “incremental pricing,” as described by Weyl and Veiga

(2017), meaning that the government covers the cost of base coverage regardless of which contract

the consumer ultimately selects.

Timing. The timing is as follows. At time 0, the government sets x0. At time 1, the insurer

chooses the premium schedule ρ and recommends an allocation χ, and the consumer learns her

type θ. At time 2, facing ρ, and knowing θ (but not her health state realization l), the consumer

chooses an insurance contract x and pays ρ(x). At time 3, the consumer learns her health state

l, chooses a level of healthcare spending a, and pays out-of-pocket cost c(a, x).

Expected Insured Costs. A consumer of type θ enrolled in contract x incurs expected insured

healthcare spending equal to

γI(x, θ) ≡
∫
k(a∗(l, x, ω), x)dF (l).

The portion paid by the government is equal to

γG(x, x0, θ) ≡
∫
k(a∗(l, x, ω), x0)dF (l).

Note that as written, the government’s portion of insured costs is tied to the consumer’s choice

of healthcare spending under her chosen contract x. It may alternatively be the case that

the government’s portion is determined by what the consumer would have done had she taken

minimum coverage x0, in which case we would have γG(x0, θ) ≡
∫
k(a∗(l, x0, ω), x0)dF (l). The

decision of how to set the government’s share of insured costs is a regulatory one. We consider

both cases in our analysis. Regardless, the net cost to the insurer of covering the consumer

is γI − γG. We make the following assumption regarding γI and γG, which we will maintain

throughout the paper:

Assumption 1 (Marginal Costs) The functions γI and γG are continuous. The derivatives

γIx and γGx are defined for almost all θ, and are uniformly bounded where defined.

See Online Appendix B.2 for primitives. These primitives subsume as a special case the canonical

b and the case of c piecewise linear.

The Insurer’s Objective Function. To cover a broad set of cases in a unified and parsimo-

nious way, we model the insurer’s objective using weights w = (wC , wI , wG) ≥ 0 on consumer

surplus, profits, and government spending, respectively. Given a set of weights w, a base coverage

level x0, an insurance contract x, and a premium p, the insurer facing type θ has payoff

(3) S(p, x, θ) = wC( v(x, θ)− p
Consumer
surplus

) + wI( p− γI(x, θ) + γG(x, x0, θ)

Insurer profit on
incremental coverage

) − wG γG(x, x0, θ)

Govt. spending
on base coverage

.
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We suppress that S depends on w and x0 as they will be fixed for the relevant portion of the

analysis. Table 1 describes the weights that would correspond to different types of insurers. A

monopolist corresponds to w = (0, 1, 0), reflecting that it cares only about itself. A social planner

with a cost of public funds τ (where typically τ > 1) corresponds to w = (1, τ, τ).

Table 1. Example Insurer Objective Functions

Insurer wC wI wG

Monopolist 0 1 0
Social planner 1 1 1
Social planner with cost of funds τ 1 τ τ
Firm offering insurance to employees 1 1 0

Notes: The table shows the weights w that would correspond to differ-
ent types of insurers.

Given weights w, we can now write each of these insurer’s problems as simply

max
ρ∈P,χ

∫
Θ
S
(
ρ(χ(θ)), χ(θ), θ

)
dG(θ)(P)

s.t. IC and ρ(x0) = 0,

where recall that x0 corresponds to the consumer’s outside option, and so the IC constraint

together with ρ(x0) = 0 capture the participation constraint. The central contribution of this

paper is to provide insight into the optimal structure of (ρ, χ).

Note that the fact that consumers privately observe their health state allows for (ex-post)

moral hazard in the model. While our theoretical analysis still applies absent moral hazard, we

incorporate this complication because it is a first-order concern in real-world health insurance

markets (Manning et al., 1987). The presence of moral hazard also lets us explore the standard

trade-off between risk protection and over-consumption of healthcare. Given the informational

constraints, the only way to reduce consumers’ exposure to financial loss under a bad health

realization is to lower their marginal cost of healthcare utilization, thereby inducing them to use

beyond the efficient level. Even for a social planner, the problem is therefore more complicated

than simply pooling all consumers at full insurance (Pauly, 1968; Zeckhauser, 1970; Marone and

Sabety, 2022).

While we focus on the health insurance application, note that we ultimately have a substantially

general model of multidimensional screening with product quality or quantity that lies in R (see

Section 5 in Rochet and Stole, 2003). Consumer valuations are given by v(x, θ), and costs are

given by γI(x, θ), with product quality indexed by x. Our model thus subsumes, for example,

extensions to multidimensional private information of the one-good nonlinear pricing problem in

Maskin and Riley (1984), or the quality-provision problem in Mussa and Rosen (1978), as well as

optimal regulation settings in the tradition of Baron and Myerson (1982). We will discuss these

relationships to the one-dimensional screening literature in more detail below.

Technical Remark 1 (Role of Price Schedule) We work directly with the price schedule ρ

as a function of the insurance contract x, rather than as a function of the type θ as is standard
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in the mechanism design literature. As Rochet (1985) argues, the two approaches are equivalent.

And, as we discuss more fully below, because there will typically be many θ’s choosing any given

x, this is technically more natural since it automatically imposes that two types who choose

the same contract pay the same price. More importantly, we proceed largely as if ρ alone is

the design variable. This is because for any given ρ, our structure has enough single-crossing

embedded in it that for almost all θ, the consumer has a unique optimal contract choice (see the

proof of Lemma 2 in Appendix A.5).

Technical Remark 2 (Stochastic Menus) Stochastic mechanisms can be very useful to the

principal when types are multidimensional (Manelli and Vincent, 2006), or when the type includes

the agent’s risk aversion (Kadan et al., 2017). For example, having the premium on the insurance

contract targeted at types with low risk aversion be determined by a lottery would help dissuade

more risk-averse types from imitating the less risk-averse types. We find it implausible that

the insurer would be allowed to run such lotteries (indeed, many regulations prevent charging

identical consumers different premiums), and so we rule them out here for reasons of economic

realism.

3 Optimal Menu Design

We now derive necessary conditions that any optimally designed menu must satisfy. We consider

two versions of the insurer’s menu design problem: (i) the case in which the insurer is restricted to

offering a finite set of contracts with fixed characteristics, and (ii) the case in which the insurer

can offer a continuum of contracts, such that it can also control the qualities of all contracts

offered. In both cases, we derive necessary conditions for optimality of ρ, which generalize the

familiar screening conditions in Mussa and Rosen (1978) and Maskin and Riley (1984) for the

one-dimensional case. We emphasize that these conditions are necessary only. Since we designed

the problem to be sufficiently general that it could be taken directly to data, it does not have

enough structure for the insurer’s payoff to be quasiconcave in ρ. Despite this limitation, which is

a serious stumbling block in most of the literature on multidimensional screening, our conditions

shed light on several important properties of optimal menus, including the incentive to exclude

and screen consumers and the existence of positive trade in the market.

We then show that these two versions of the problem are closely related. The optimal menu

under a fixed set of contracts converges to the optimal menu under a continuum of contracts as

the number of contracts in the fixed set grows large. Because it is substantially more tractable

and can approximate the continuum case arbitrarily well, we view the case with a fixed set of

contracts to be of primary importance.

3.1 Consumer Demand for Insurance

As a building block, we first analyze the consumer’s demand for insurance as a function of their

type. Recall that the consumer is characterized by a coefficient of absolute risk aversion ψ, a
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distribution of health states F , and a taste for healthcare utilization ω. It will be useful to define

the following “marginal-utility-adjusted” density of health states given x and θ:

(4) m(l|x, θ) =
e−ψz(l,x,ω)f(l)∫
e−ψz(l′,x,ω)f(l′)dl′

.

This is a transformed density of l, where the weight on each health state l is updated by the

marginal utility to the consumer of an extra dollar in that state.17 To see the role of m, note

that by the Envelope Theorem, the derivative of the consumer’s ex-post payoff with respect to

coverage level is zx(l, x, ω) = −cx (a∗(l, x, ω) , x), since the effects on z via the associated change

in the optimal level of healthcare utilization can be ignored. Hence from (2),

(5) vx(x, θ) = − 1

ψ

∫
e−ψz(l,x,ω)(−ψzx(l, x, ω))f(l)dl∫

e−ψz(l,x,ω)f(l)dl
= −

∫
cx(a∗(l, x, ω), x)m(l|x, θ)dl,

meaning that the marginal effect of higher coverage on a consumer’s certainty equivalent payoff

is the average under m of paying −cx less in each health state.

We can now shed some light on the comparative statics of χ with respect to θ. We do so by

analyzing how vx changes with ω, ψ, and F , respectively, since this will pin down the behavior

of χ. Given ω and F , demand increases in the consumer’s absolute risk aversion parameter ψ.

Knowing that the consumer behaves in a monotone fashion along one dimension of her type will

prove useful below. Given ω and ψ, demand increases when F increases in an MLRP sense,

namely, when the consumer becomes sicker. Finally, while comparative statics with respect to

ω are straightforward in the case of linear or convex functions c, they are ambiguous under

our concavity assumption on c. The formal statement and proofs of these results are in Online

Appendix B.1.

3.2 Preliminaries

To simplify our analysis of the insurer’s objective function S, we separate the portion that

represents gains from trade from the portion that represents a transfer between the insurer and

consumers. To this end, define

S(x, θ) ≡ wI(v − γI)− (wG − wI)γG,

where the term (v− γI) is the dollar value of the social surplus created by allocating a consumer

of type θ to contract x, and (wG−wI)γG is the effect of government transfers to the insurer. We

can then rewrite the insurer’s payoff as S(p, x, θ) = S(x, θ)− (wI − wC)(v(x, θ)− p), where the

second term measures the value the insurer places on consumer surplus. It is important in what

follows that S does not depend on p.

We can now interpret the marginal gains from trade from insurance in familiar terms. The

17The marginal utility of income also in principle depends on y − p, but due to CARA, this involves the term
e−ψ(y−p), which cancels.
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derivative of consumer-specific social surplus (v − γI) with respect to coverage level is given by

vx − γIx =
∫

(−cx)mdl −
∫

(−cx)fdl

Marginal value of
risk protection

−
∫

(1− ca)a∗xfdl
Marginal social cost
of moral hazard

.

Recall that m reflects health states weighted by marginal utilities. So,
∫

(−cx)mdl represents the

benefit to the consumer of marginally more generous insurance, while
∫

(−cx)fdl is the cost to the

insurer. The difference between the two represents the marginal value of risk protection provided

by insurance. As coverage level increases, the additional healthcare spending a∗x induced by

insurance confers on the consumer a marginal benefit of ba, which at an optimum level of spending

equals its marginal out-of-pocket cost ca. The full marginal social cost to the insurer, however,

remains 1. Averaging across all health states,
∫

(1− ca)a∗xfdl then represents the marginal social

cost of spending induced by insurance.

As a final preliminary, for any θ, let x̄(θ, ρ) be the largest best response to ρ and x(θ, ρ) the

smallest best response. It will simplify the derivations if for almost all θ, x̄(θ, ρ) and x(θ, ρ)

(which may be equal) are the only best responses for θ. Formally, say that ρ has the two-best-

response property (2BRP) if for almost all (ω, F ), the best response correspondence X(ω, ·, F, ρ)

has at most two elements for any ψ. We will say that two price schedules are close to each other

if for a given contract available at a given price under one price schedule, something almost as

good is available for only a slightly higher price under the other.18

Technical Remark 3 (Genericity of 2BRP) Our strong intuition is that 2BRP holds gener-

ically. For any three x′ < x′′ < x′′′, there is a locus of θ where the consumer is indifferent between

x′ and x′′ and one where the consumer is indifferent between x′ and x′′′. It would be extremely

surprising if these loci corresponded over any region, but v is sufficiently complicated that for-

malizing this is intractable beyond some special examples. We can do the analysis that follows

without 2BRP, but the notational load is extreme, and the economics less transparent.

3.3 Optimally Pricing a Fixed Set of Contracts

Suppose the insurer is restricted to offering a fixed set of contracts {xk}Kk=1, where x0 < x1 <

· · · < xK ≤ 1, but can freely set their associated premiums. Consider a candidate price schedule ρ,

and a perturbation in which the insurer raises (or reduces) by a constant amount the premiums

on all contracts more generous than a given contract x. As premiums increase, two things

happen. First, the insurer makes more money on inframarginal consumers who continue to

choose a contract above x. Second, some consumers who previously chose a contract above x will

18That is, for two price schedules ρ′ and ρ′′, the distance d(ρ′, ρ′′) is the smallest number such that for each x,
there is x̂ within d(ρ′, ρ′′) to the left of x with ρ′′(x̂) ≤ ρ′(x) + d(ρ′, ρ′′), and vice versa. Formally,

d(ρ′, ρ′′) = min{δ|ρ′′(max (x− δ, 0)) ≤ ρ′(x) + δ and ρ′(max (x− δ, 0)) ≤ ρ′′(x) + δ for all x ∈ [0, 1]}.

The minimum is well-defined since ρ is left-continuous. It is straightforward to check that d is a metric. Indeed,
d is the Levy metric (Billingsley (1995); Problem 14.5, p.198) adjusted to take account of the fact that x lies in
a compact support, and we will refer to it as such henceforth.
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substitute to contract x (or below). The switchers will generate a different amount of surplus

than previously. At the optimum, for either an increase or decrease in premiums, the insurer

balances the two effects.

Formally, fix (ω, F ) and a contract 0 ≤ k < K and, suppressing them in what follows, let ψ̂ be

the boundary type such that types less risk averse than ψ̂ choose xk or below, while types more

risk averse than ψ̂ choose xk+1 or above. Now, raise the premiums for all contracts k + 1 and

above by a small amount ε and, abusing notation, let ψ̂(ε) be the new boundary type after the

perturbation.

Consumers with risk aversion between ψ̂ and ψ̂(ε) now substitute from their previous choice of

contract to a lower contract. The size of this effect depends on (i) how thick the density of types

is near ψ̂ (g(ψ̂)); (ii) how quickly the boundary moves (ψ̂ε(0)); and (iii) the per-consumer impact

on the insurer of the induced change in contract choice measured by S. When ψ̂ is interior, 2BRP

implies that the boundary type ψ̂ is indifferent between contract x = xk for some k ≤ k and

contract x̄ = xk̄ for some k̄ > k, and that these two contracts are the only two optimal choices.

In this case, we can define a ratio

(6) r =
S(x̄, ψ̂)− S(x, ψ̂)

vψ(x̄, ψ̂)− vψ(x, ψ̂)
,

where the denominator captures the speed at which the boundary type moves and the numerator

captures the impact of that move on the insurer.19 Multiplying r by g(ψ̂) captures effects (i)–(iii).

The other effect of the perturbation is that the insurer now makes more money on infra-

marginal consumers who continue to choose a contract above xk. The size of this effect depends

on the number of (ω, F )-type consumers who are more risk averse than ψ̂ (1 − G(ψ̂)). At the

optimum, the insurer balances the expected value of all of these effects across (ω, F )-types.

Reintroducing dependencies on (ω, F ), the overall impact on the insurer’s payoff when facing

type (ω, F ) is

(7) V(xk, ω, F ) ≡ (wI − wC)(1−G(ψ̂(xk, ω, F )|ω, F ))− r(xk, ω, F )g(ψ̂(xk, ω, F )|ω, F ).

We can now state our optimality theorem. Write G(ω, F ) for the marginal of G onto (ω, F ).

Theorem 1 (Optimality Condition: Fixed Set of Contracts) Let (ρ, χ) be optimal given

a set of contract {xk}Kk=0, and let ρ satisfy 2BRP. Then,
∫
V(xk, ω, F )dG(ω, F ) ≤ 0 for k < K

with equality if ρ(xk) < ρ(xk+1).

The proof is in Appendix A.1. The role of ρ(xk) < ρ(xk+1) is that on increments where the price

schedule is flat (when ρ(xk) = ρ(xk+1)), the insurer cannot lower ρ(xk+1) without also lowering

ρ(xk) given that price schedules must be monotone. The optimality condition must therefore

19If ψ̂ is not interior, then set r = 0, since in that case, ψ̂ε(0) = 0. In the proof, we show that with probability
one there is some (ω, F )-type such that either ψ̂ is interior or the consumer has a strict preference between his
favorite contract below xk and his favorite contract above xk+1. In that event, ψ̂ will equal either ψ or ψ̄ as
appropriate, and will remain that way even when the price vector is perturbed by a small amount.
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hold with equality only on increments where the price schedule is strictly increasing.20

3.4 Optimally Pricing a Continuum of Contracts

We next consider what happens when the insurer is free to offer all coverage levels x in [0, 1]. As

before, fix a contract x and raise the price of all strictly higher contracts by ε. Given x and some

fixed (ω, F ), let ψ̂, ψ̂(ε), x̄ and x be defined as before. If x̄ > x, then r defined by equation (6)

continues to capture the effect of types who flow from above x to below x when ε is raised. But,

because we are in the continuum, it can easily be that the best contract choice correspondence is

single-valued at ψ̂, so that x̄ = x = x. In this case, it is useful to think of r as reflecting a limit

where x̄− x is strictly positive but small. Cauchy’s Mean Value Theorem then tells us that

r =
Sx(x, ψ̂)

vxψ(x, ψ̂)
,

an intuition we formalize in Appendix A.3. With the definition of r modified in this way, we

can again show that the value of the perturbation facing (ω, F ) is V(x, ω, F ), and so Theorem 1

generalizes readily to the continuum. See Theorem 4 in Appendix A.3.

There is also an additional necessary condition that must hold in the continuum case, related

to the insurer’s ability to adjust coverage levels of the contracts offered, in addition to their

prices. This additional condition would also be necessary in the case in which the insurer could

offer a fixed number of contracts, and could freely set their prices and qualities. This case is

presented in Appendix A.2.

3.5 Some Relationships to the Literature

Our derivation of optimality conditions relies solely on perturbations to the premium schedule,

which allows us to generalize several results from the literature on principal-agent problems with

private information.

First, our optimality condition
∫
VdG (ω, F ) = 0 can in fact be interpreted in quite a familiar

way. When the insurer is a monopolist, it has a marginal revenue = marginal cost interpretation,

and when the insurer is a social planner, it has a price = marginal cost interpretation. We will

make this point in more detail in Section 4, and so we defer the details.

Second, the conditions subsume as special cases the well-known analogous conditions when

private information is one dimensional. To see this, consider the monopoly case and a continuum

of contracts, and assume that there is only one (ω, F ), but that ψ is the consumer’s private

information. The setting then reduces to a standard one-dimensional principal-agent problem.

In this case, our main condition equating the integral of (7) to zero reduces to

Sxg − vψx(1−G) = 0,

20For another example where an elementary perturbation argument on the price schedule leads to economically
intuitive optimality conditions, see Saez (2001). He derives an intuitive first-order condition in the canonical
Mirrlees optimal taxation problem via a simple perturbation of the optimal tax schedule.
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for all x, and so reflects the standard efficiency versus information-rents trade-off. Providing

slightly more coverage to a type ψ changes efficiency by Sxg, but also has an impact vψx(1−G)

on the information rents that must be given to types higher than ψ. If instead we change a given

quality x while leaving its premium unaltered, then the perturbation has bite only if χ is constant

on some interval (ψl, ψh). The usual approach in the literature is to solve for the allocation (in

this case, the contract assigned to each type) in the relaxed problem that omits the monotonicity

constraint, and then “iron” it if the solution fails to be monotone. Online Appendix B.6 shows

that the ensuing condition based on our perturbation provides a direct route to the standard

“ironing” condition (Fudenberg and Tirole, 1991, Chapter 7),

∫ ψh

ψl

(
Sx − vxψ

1−G
g

)
gdl = 0.

In short, our conditions in the multidimensional case are the natural generalizations of the

textbook cases in which private information is one-dimensional.

Third, return to multidimensional types, and assume that we restrict the monopolist to choos-

ing a single contract, which is a special case of our setting with a finite number of contracts

(discussed in Appendix A.2). Online Appendix B.6 shows that in this case, our necessary condi-

tions coincide with those of Veiga and Weyl (2016). Namely, the conditions can be combined to

derive a single necessary condition on the optimal contract x with a term involving the covariance

between the marginal benefit for the consumer vx, and the cost to the insurer γI , calculated using

the density of types on the margin between choosing x and the outside option x0.21,22

Finally, if we start with functions v and γI as primitives (without the structure provided by

the insurance problem), then our results provide the optimality conditions for suitable extensions

of, say, Mussa and Rosen (1978) and Maskin and Riley (1984) with multidimensional types.

3.6 Incentives to Exclude, Screen, and Trade

The optimality condition
∫
VdG = 0 also provides insight into the insurer’s incentives to exclude

and screen types. In Online Appendix B.7, we show that from the point of view of the social

planner, a monopolist excludes too many consumers the market. We also show that if ω was

the only source of private information, a social planner would completely pool types, while a

monopolist insurer may completely sort types, an extreme example of differential incentives to

screen.

Another question of interest is whether a monopolist insurer always trades (that is, makes

strictly positive profits).23 Assume that the government’s costs γG increase with consumers’

21Veiga and Weyl (2016) interpret a positive covariance as “adverse sorting” in that the marginal types are costly
for the firm, and a negative covariance as “advantageous sorting.”

22One can generalize this construction to any finite number of contracts (with two covariances in the resulting
expression). We omit this development for several reasons. First, we find the interpretation of the resulting
expression to be more involved than that driven directly by the two perturbations. Second, the covariance terms
disappear in the limit as steps grow small. And third, we are skeptical that there are economically interesting
primitives giving structure to these covariances.

23This question has received attention both in the empirical insurance literature (see the no-trade result in Hendren,
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chosen level of coverage, that F̄ is non-degenerate (so that the worst risk type faces real risk),

and that the outside option is strictly less than full insurance. Under these conditions, the

monopolist insurer will always choose to sell to a strictly non-empty set of types. The proof is in

Appendix A.4, but the intuition is as follows. From the point of view of the monopolist, there is

“no moral hazard” at x0, since the government pays for any spending that occurs. Thus, giving

a little extra insurance to some types has a first-order gain in terms of the insurance motive, but

only a second-order cost in terms of wasteful medical spending covered by the monopolist.

3.7 Convergence

We now show that the optimal menu under a fixed set of contracts converges to the optimal

menu under a continuum of contracts as the number of contracts in the fixed set grows large.

Definition 1 defines convergence of sets of price schedules. Theorem 2 shows that if Pn converges

to P0, then the payoff to the insurer does as well, and similarly for the optimal solutions. The

proof is in Appendix A.5.

Definition 1 Say that a sequence (Pn) of closed subsets of the closed subset P0 ⊆ P converges

to P0 if for all ρ ∈ P0, there is a sequence (ρn) with each ρn ∈ Pn such that ρn → ρ.

Theorem 2 (Convergence) Let P0 be closed, and let Pn → P0. Then, the payoff to the insurer

under Pn converges to her payoff under P0. Further, if ρn → ρ̂ is any convergent sequence of

optimal solutions for the insurer given Pn, then ρ̂ is optimal for the insurer in P0, and the payoffs

to the consumer of each type converges to those under ρ̂.

Intuitive as it may be, Theorem 2 has two very useful implications. First, for numerical

purposes, the modeler can use any reasonable set of fixed contracts, and be confident that they

get a result that approximates what the insurer can achieve with a continuum of contracts.

The details of how the sequence Pn is constructed simply do not matter, as long as the set of

contracts grows dense.24 Second, this result provides theoretical flexibility. If the insurer can

offer a sufficiently rich set of fixed contracts, then there is a vanishing amount of value added

by also allowing it to modify the coverage levels of those contracts, as considered in Appendix

A.2. We can therefore work in the case of a (large) fixed set of contracts or in the continuum,

whichever is more convenient.

4 Demand-Profile Approach

We now present a reformulation of the insurer’s problem and discuss the conditions under which

its solution is optimal or approximately optimal in the original problem. Our approach builds

2013) and in the theoretical insurance literature with either adverse selection or both adverse selection and moral
hazard (see Chade and Schlee (2020) and Chade and Swinkels (2022) for no-trade and trade results).

24We conjecture that if the contracts are relatively evenly spaced, then convergence is of the order 1/K2. If the
insurer’s profit had a Gateaux derivative everywhere, with bounds on the second derivative, then the rate of
convergence result would follow as long as the optimal ρ is interior. Where 2BRP holds, the Gateaux derivative
as one moves from ρ linearly towards ρ̂ is

∫ ∫
(ρ̂(x) − ρ(x))VdGdx. We do not know how to show that 2BRP

holds everywhere or how to tame the speed at which the derivative changes.
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directly on the “demand profile” approach proposed by Wilson (1993) and discussed in Rochet

and Stole (2003) and Armstrong (2016), although the existence of selection in our setting in-

troduces additional complications. Formally, we show how—and when—the problem of setting

a full price schedule on a fixed set of contracts can be reduced to a set of entirely independent

sub-problems of setting the marginal price of incremental coverage. We then demonstrate how

this decoupling yields substantially more powerful analytical results and permits visual analysis

using a familiar graphical framework.

4.1 The Reformulation

The key to this approach is to reformulate the problem in terms of incremental levels of coverage.

To that end, we wish to express the insurer’s expected payoff on a given consumer in a given

contract as the payoff the insurer obtains when the consumer takes the outside option plus all

the incremental effects of moving the consumer from one coverage level to the next until the

relevant contract is reached.

Fix a set of potential contracts X = x0 < x1 < · · · < xK ≤ 1. For a given premium

schedule ρ and for k = 1, . . . ,K, let pk = ρ(xk) − ρ(xk−1) be the marginal premium between

adjacent contracts. Similarly, let vk(θ) = v(xk, θ) − v(xk−1, θ) be a type-θ consumer’s marginal

willingness to pay between adjacent contracts and γk(θ) = γI(xk, θ)−γI(xk−1, θ) be the marginal

insured cost. For simplicity in this portion of the analysis, suppose that the government’s cost

of providing base coverage is invariant to the consumer’s chosen contract, so that marginal

government spending is zero: γG(x0, xk, θ)− γG(x0, xk−1, θ) = 0.25 Note that since contracts are

vertically differentiated and the premium schedule is increasing in coverage level, pk, vk, and γk

are all weakly positive. The insurer’s marginal payoff from charging type θ a marginal premium

pk to move from contract k − 1 to k is then

Sk(pk, θ) = wC(vk(θ)− pk) + wI(pk − γk(θ)).

Given this notation, the insurer’s objective function can be re-expressed. Let k̃(θ, ρ) be the

optimal contract chosen by a consumer of type θ facing price schedule ρ (that is, χ(θ) = xk̃(θ,ρ)).

The payoff to the insurer on type θ given ρ is then

(8) S0(θ) +

k̃(θ,ρ)∑
k=1

Sk(pk, θ),

where S0(θ) = wCv(x0, 0) + wIγI(x0, θ) + wGγG(x0, θ) is the payoff from putting type θ into

contract x0, and where we take the second term to be zero when the consumer’s optimal contract

is x0.

As in the original problem, solving for the consumer’s optimal contract is complicated because

25This corresponds to, for example, the Medicare Advantage market, where the government makes a fixed payment
to insurers for enrolling each consumer, regardless of what coverage level the consumer ultimately selects. It
is straightforward to proceed with a government cost of base coverage that is linked to the consumer’s chosen
coverage level, but there is limited additional economic insight and substantially more notation.
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it is defined by a set of non-local incentive constraints. Under certain conditions, however, it

can become substantially simpler. Say that a price schedule ρ is quasiconcave consistent (QC)

for a consumer of type θ if the consumer’s payoff v(x, θ) − ρ(x) is single-peaked in x. When ρ

is QC for θ, then the consumer’s payoff reaches its peak at the last point where their marginal

payoff vk(θ) − pk is positive. Now, the optimal contract choice k̃ is defined by a local incentive

constraint: k̃(θ, ρ) = max{k|vk(θ) ≥ pk}.

If ρ is QC for θ, we can rewrite the insurer’s payoff on type θ as the sum of the payoffs on all

increments that the consumer is—in isolation—willing to pay for:

(9) S0(θ) +
∑

{k|vk(θ)≥pk}

Sk(pk, θ).

If ρ is QC for all θ, then we can write the insurer’s expected payoff from providing increment k

of insurance to all types who are willing to pay for the increment as

Π̃k(pk) ≡
∫
{θ|vk(θ)≥pk}

Sk(pk, θ)dG(θ),

meaning the insurer’s total payoff is given by

(10) Π̃(ρ) ≡
∫
S0(θ)dG(θ) +

K∑
k=1

Π̃k(pk).

To see this, integrate (9) with respect to G and swap the order of integration and summation.26

So, consider the problem in which the insurer maximizes Π̃(ρ):

(P̃ ) max
(p1,...,pK)

K∑
k=1

Π̃k(pk).

Note that each of the insurer’s incremental payoffs Π̃k(pk) is a function only of the incremental

price pk. The solution ρ̃ to P̃ can therefore be constructed from the set of optimal incremental

prices (p̃1, . . . , p̃K), where on each increment, p̃k ∈ arg maxpk Π̃k(pk). Because P̃ can be solved

one contract at a time, it is a much simpler problem than P .

4.2 Analyzing the Reformulated Problem

The reformulated problem allows us to think about the insurer’s optimal price increments pk one

at a time. We use this simplicity to study the solution to P̃ , and recast that solution in familiar

26Formally, letting IA be the indicator function of the set A,∫ ∑
{k|vk(θ)≥pk}

Sk(pk, θ)dG(θ) =

∫ K∑
k=1

I{vk(θ)≥pk}S
k(pk, θ)dG(θ) =

K∑
k=1

∫
I{vk(θ)≥pk}S

k(pk, θ)dG(θ)

=

K∑
k=1

∫
{θ|vk(θ)≥pk}

Sk(pk, θ)dG(θ) =
K∑
k=1

Π̃k(pk).
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terms. To begin, rewrite the insurer’s payoff in terms of quantities instead of prices. That is,

instead of choosing incremental prices, we can think of the insurer as choosing the fraction of

consumers that will purchase each incremental coverage level. When the incremental price is pk,

this fraction is equal to Qk(pk) =
∫
{θ|vk(θ)>pk} dG(θ). When Qk ∈ (0, 1), it is strictly decreasing

in pk, and thus has an inverse function P k defined by P k(Qk(pk)) = pk for every pk.27

Let

Ck(qk) =

∫
{θ|vk(θ)>Pk(qk)}

γk(θ)dG(θ)

be the insurer’s cost of providing incremental coverage level k to the qk consumers who purchase

at price P k(qk). Let the marginal cost MCk be the derivative of Ck. Similarly, let

V k(qk) =

∫
{θ|vk(θ)>Pk(qk)}

vk(θ)dG(θ)

be aggregate consumer utility when qk consumers are served. Note that V k
q (qk) = P k(qk). It is

now straightforward to verify that

(11) Π̃k(P k(qk)) = wC [V k(qk)− P k(qk)qk] + wI [P k(qk)qk − Ck(qk)],

and thus we can think of the insurer as solving maxqk Π̃k(P k(qk)) at each coverage level increment.

We can also now usefully decompose the insurer’s incremental payoff into a “benefit” equal to

wCV k(qk) + (wI − wC)P k(qk)qk and a “cost” equal to wICk(qk). In the case of a monopolist,

when (wC , wI , wG) = (0, 1, 0), the benefit is simply revenue, P k(qk)qk, and the cost is simply the

expected insured cost of incremental coverage, Ck(qk).

Denoting the price-elasticity of demand by ε, so that 1/ε = P k
qk
qk/P k, we can then write the

derivative of the insurer’s objective function as

(12)
(

Π̃k(P k(qk))
)
qk

= P k(qk)
(
wI + (wI − wC)1

ε

)
Marginal benefit

− wIMCk(qk)

Marginal cost

.

The first term is the insurer’s marginal benefit of giving more consumers incremental coverage

level k.28 As quantity increases, the insurer receives P k(qk) on the extra unit sold, but P k

is falling at rate P k(qk)/ε, resulting in a transfer from the consumer to the insurer valued at

wI − wC . The second term is the insurer’s marginal cost, where wIMCk(qk) is the incremental

insured cost of the marginal consumer.

At an interior optimum, marginal benefit is equal to marginal cost, yielding a familiar markup

equation. When the insurer is a monopolist, the optimality condition reduces to P k(1 + (1/ε)) =

MCk. Furthermore, all the terms in Π̃k
pk

= 0 can be unpacked to obtain an expression that is a

direct analog of the optimality condition
∫
VdG = 0.29 This makes intuitive sense, as increasing

27To see that Qk is strictly decreasing where it is interior, recall that vxψ > 0 and so vk(ω, ·, F ) is strictly increasing.
Hence, {θ|vk(θ) > pk} is strictly shrinking in pk.

28The marginal benefit also in principle includes a term wC(V kqk (qk)− P k(qk)), but since the marginal consumer

is indifferent about paying P k(qk), this term is zero.
29See Lemma 3 in Appendix A.6.
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the marginal premium pk raises the price schedule ρ for all contracts at or above k, and so is

effectively the perturbation discussed in Section 3.3.

4.3 Graphical Analysis

The reformulated problem P̃ is composed of a set of independent two-contract problems, one

between each pair of adjacent contracts. It can therefore be analyzed graphically in the spirit of

Einav et al. (2010b). Indeed, Einav and Finkelstein (2011b) suggest the possibility of generalizing

their model to more than two contracts. Geruso et al. (2019) take a first step in this direction

by extending the graphical analysis to accommodate three contracts. A central contribution of

our analysis is to formalize the assumptions necessary to carry out this approach. In addition,

the flexibility of our insurer objective function allows our graphical analysis to nest both the case

of a monopolist insurer (as in Mahoney and Weyl, 2017) and the case of a social planner (as in

Marone and Sabety, 2022). In what follows, we normalize the insurer’s weight on its own profits

wI to 1.

Figure 1 illustrates the insurer’s problem for one incremental coverage level. It shows the

inverse demand function P k, the associated marginal revenue function MRk = P k(1 + (1/ε)),

and the insurer’s marginal cost curve MCk.30 The insurer’s marginal benefit of serving more

consumers is given by MBk(qk) = P k(qk)(1 + (1 − wC)1
ε ), which can be written as a convex

combination of the marginal revenue and inverse demand curves, depending on the weight given

to the consumer:

MBk(qk) = (1− wC)MRk(qk) + wCP k(qk).

The marginal benefit curve shown is an example for a case where wC ∈ (0, 1).31 The insurer’s

optimal quantity q̃k obtains where MBk = MCk.32

Figure 1 subsumes a number of cases. For a monopolist (wC = 0), MBk coincides with the

marginal revenue curve MRi, and the optimal quantity solves MRk = MCk. For a utilitarian

social planner with no excess cost of public funds (wC = 1), MBk coincides with the inverse

demand curve, and the optimal quantity solves P k = MCk. As drawn, the social planner chooses

the corner solution q̃k = 1. Finally, in the case of a planner with an excess cost of public funds

(0 < wC < 1), MBk is the usual convex combination of the marginal revenue and inverse

demand curves. As the cost of public funds rises (which, given our normalization, corresponds

to wC falling), we approach the monopoly solution.

30Note that we have drawn the marginal cost as decreasing in the quantity of consumers that purchase the marginal
coverage, reflecting an assumption that there is adverse selection (Einav et al., 2010b).

31Note that wC > 1 is a viable possibility.
32Note we have drawn the marginal benefit curve as crossing the marginal cost curve from above. This is not

guaranteed from our primitives. Indeed, there is the possibility of multiple crossings (in which case the solution
may not be interior), or of either a single crossing from below or no crossing at all (in which case it certainly
will not be).
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Figure 1. Insurer’s Optimal Choice of qk

Notes: The figure shows the inverse demand curve P k, the marginal revenue curve
MRk, the insurer’s marginal cost curve MCk, and the insurer’s marginal benefit
curve MBk in the market for incremental coverage amount k. The insurer’s optimal
quantity q̃k obtains where the marginal benefit curve intersects the marginal cost
curve.

4.4 Comparative Statics, Exclusion, and Screening

The simplified problem yields some simple monotone comparative statics of economic interest,

many of which can be seen clearly in Figure 1. First, when the consumer is weighted more

heavily in the insurer’s objective function, the marginal benefit curve rotates upwards towards the

demand curve. The optimal quantity q̃k on every marginal coverage level is therefore increasing

in wC (and the optimal price p̃k is decreasing).33 Conversely, if the consumer is weighted less

heavily relative to the insurer, for example if the insurer is a social planner facing a rising cost of

public funds, the marginal benefit curve rotates down towards the marginal revenue curve. As the

cost of public funds increases to infinity, the marginal benefit curve eventually coincides exactly

with the marginal revenue curve (that is, the monopolist’s and the social planner’s solutions

would coincide).

It is also now possible to derive stronger results with respect to exclusion and screen. First, note

that as long as the insurer values profits more than consumer surplus, the marginal benefit curve

will diverge to −∞ as qk goes to 1. The reason for this is that as qk goes to 1, the reciprocal

elasticity of demand 1/ε goes to −∞. So long as this term gets any weight in the insurer’s

objective (i.e., as long as profits are weighted at least slightly more heavily than consumer

surplus), the optimal marginal quantity q̃k will be strictly less than one.

Proposition 1 (Optimal Exclusion at Every Level) If wI > wC , then q̃k < 1 for all k.

The proof is in Appendix A.7. Note that Proposition 1 applies at every incremental coverage

33By standard monotone comparative statics results, this is true even if there are multiple crossings of marginal
benefit and marginal cost, if there was a single crossing from below, or if there was originally no crossing.
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level, including the first. It thus implies that an insurer with wI > wC optimally excludes a

strictly positive measure set of consumers from the market for incremental coverage.34

Proposition 1 also sheds light on differential incentives to screen. To see this, note that under

any price schedule that is QC for all consumers, within the range of traded coverage levels,

every contract will be traded. No contracts will be “skipped.” In the case of the monopolist,

Proposition 1 tells us that the range of traded coverage levels will always include base coverage

x0. If the monopolist’s optimal price schedule satisfies quasiconcave consistency, then it sells

every contract in a range that includes x0 at the lower end. The social planner, on the other

hand, may very well choose a higher coverage level as the lower end of the traded range. In

Figure 1, for example, the demand curve everywhere exceeds the marginal cost curve, and so

the social planner wishes to allocate all consumers to a contract weakly greater than k. The

monopolist therefore uses more contracts than the social planner in its optimal menu. Note that

this also implies that a monopolist will overall offer less coverage than a social planner.

4.5 Relationship Between P̃ and P

The reformulation of the insurer’s objective under the true problem P into its objective under P̃

relies on a price schedule that is QC for all consumers. The solution to P̃ therefore coincides with

the solution to P only if the solution to P is QC for all consumer types. Nothing in our model

guarantees that this will be the case (indeed, Deneckere and Severinov (2017) cast serious doubt

on whether such primitives generally exist). The optimal price schedule is an equilibrium object

that depends on the distribution G(θ) of consumer types in the economy as well as on the set of

potential contracts X under consideration. Deviations from quasiconcavity indicates a desire to

“bundle” adjacent levels of coverage, a phenomenon that by its nature cannot be captured by a

decoupled analysis. When such deviations arise, what then can we learn from the reformulated

problem?

First, Π(ρ̃), the payoff under P (which understands consumers globally optimize) evaluated

at the solution to P̃ (which assumes consumers only locally optimize), provides a lower bound

on the insurer’s true optimal payoff.35 To the extent one is interested in evaluating what is

achievable under different insurer objective or sets of potential contracts, this can be a useful

starting point. Second, if a given price schedule ρ is QC for all consumer types except a small

set, then Π(ρ) ∼= Π̃(ρ), with the approximation arbitrarily good as the measure of the set of types

where ρ is not QC goes to zero. As the measure of the set of consumer types for whom QC fails

goes to zero under the solution to the true problem, the solution to the reformulated problem

therefore becomes an arbitrarily good approximation. We will show in Section 5 that in applied

analysis, this approximation can be extremely valuable.

While we are unaware of assumptions on primitives that justify the QC property, it is still

34Optimal exclusion has precedent in the literature, but only without common values (Armstrong, 1996; Deneckere
and Severinov, 2017; Barelli et al., 2014).

35Because deviations from quasiconcavity may also arise in the solution to P̃ , Π̃(ρ̃) provides only an approximate
lower bound on the insurer’s payoff under P . As the measure of the set of consumers for whom QC fails goes to
zero, the lower bound becomes exact.
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possible to build intuition. For the consumer’s problem to be quasiconcave in coverage level,

the marginal price schedule pk must intersect the consumer’s demand curve for coverage vk (at

most) once from below. Downward-sloping consumer demand curves—which is to say, declin-

ing marginal willingness to pay for incremental coverage—will therefore help push in the right

direction.36 Naturally, the number of potential contracts considered—and their placement in cov-

erage level space—are also centrally related to the ability to universally satisfy quasiconcavity.

With only two potential contracts, any price schedule is trivially QC, since the consumer payoff

schedule v(θ, x)− ρ(x) has only two points. Adding more contracts adds more opportunities for

quasiconcavity to fail. Finally, in their study of the demand-profile approach, Rochet and Stole

(2003) (Section 9.1) present an example with two products plus an outside option (two contracts

plus x0, in our case). They suggest that a key factor that will help ensure the demand-profile

solution will closely approximate the true solution is positive dependence in consumers’ marginal

valuations. In other words, consumers who have a higher marginal value for the first increment

of quality also have a higher marginal value for the second (“the order statistics [of consumer

marginal valuations] are positively correlated,” Rochet and Stole (2003), emphasis in original).

We will discuss this point further in our empirical analysis.

While each of these contributing factors provides intuition, none will (to our knowledge) be

sufficient to guarantee quasiconcave consistency. In the end, the extent to which quasiconcave

consistency holds in a given problem must be checked empirically.

5 Numerical Analysis

We now study the insurer’s problem numerically using an empirically calibrated model of a

health insurance market. Importantly, the generality of our model allows us to directly apply

state-of-the-art empirical estimates of the distribution of multidimensional consumer types in a

population. Beyond allowing us to assess the empirical validity of quasiconcave consistency, the

numerical analysis also allows us to demonstrate the usefulness of the reformulated problem in

gaining intuition about the solution as well as in evaluating the effects of policy interventions in

a monopoly market.

5.1 Description of the Calibrated Market

Consumers. We simulate a population of consumers using a distribution of demographics

chosen to match the under-65 US population and parameter estimates reported in Marone and

Sabety (2022).37 Each consumer is a household composed of some number of individuals. Each

household is characterized by type θ = (ψ, ω, F ), where F is assumed to have a shifted log-normal

36Note that in general, the concept of “coverage level” x has no cardinal interpretation. Cardinality must be
inherited from the parameterization of contracts, which for generality we avoid in this paper. If contracts
are linear, x can be thought of as the fraction of total healthcare spending paid by the insurer. In this case,
quasiconcavity of a price schedule could be guaranteed by the combination of concave consumer demand functions
(vxx ≤ 0) and a convex price schedule (ρxx ≥ 0).

37Details of the simulation procedure are provided in Online Appendix B.8.
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distribution such that log(l + κ) ∼ N(µ, σ2). Consumer preferences feature constant absolute

risk aversion, and we parameterize b such that b(a, l, ω) = (a− l)− 1
2ω (a− l)2.

Table 2 summarizes the characteristics of our simulated population. The average household

would have total healthcare spending equal to $12,170 under a full insurance contract, but only

$10,684 under a null contract, reflecting moral hazard. Facing an equal odds gamble between

$0 and $100, the average household would have a certainty equivalent of $48.9, reflecting risk

aversion. Online Appendix Figure B.1 provides a depiction of the relationship between consumer

types and willingness to pay for insurance in this population.

Table 2. Population Summary Statistics

Percentile

Sample demographic Mean 10 25 Median 75 90

Demographics

Number of adults 1.9 2.0 2.0 2.0 2.0 2.0
Number of children 0.6 0.0 0.0 0.0 1.0 2.0
Average age of household adults 43.5 26.2 32.6 43.6 54.3 60.7

Dimensions of type θ

Health state distribution parameter µ 1.6 0.3 0.9 1.6 2.3 2.8
Health state distribution parameter σ 1.0 0.8 0.9 1.0 1.2 1.3
Health state distribution parameter κ 0.6 0.1 0.3 0.5 0.9 1.3
Moral hazard parameter ω 1.4 0.8 1.0 1.3 1.7 1.9
Risk aversion parameter ψ 0.9 0.2 0.4 0.6 1.1 1.9

Resulting characteristics

CE of equal odds gamble between $0 and $100 ($) 48.9 47.6 48.6 49.2 49.5 49.7
Expected total spending, null contract ($000) 10.6 3.0 4.4 7.8 13.8 22.3
Expected total spending, full insurance ($000) 11.9 4.1 5.7 9.2 15.2 23.6

Notes: The table shows descriptive statistics for our simulated population of 10,000 households.
Note that the moral hazard parameter and coefficient of absolute risk aversion are reported relative
thousands of dollars.

Insurance Contracts. We consider a set of contracts that are piecewise linear, with a de-

ductible, coinsurance region, and out-of-pocket maximum design. We suppose that the base

level of coverage x0 is a “Catastrophic” contract with a deductible and out-of-pocket maximum

of $10,000. Our baseline set of potential contracts is depicted in Figure 2. Because they roughly

correspond to the levels of coverage available on the Affordable Care Act exchanges, we refer

to the contracts between Catastrophic and full insurance as Bronze, Silver, and Gold.38 As will

become clear, the returns to allowing an increasingly “dense” contract space are economically

small.

5.2 Convergence

Theorem 2 states that an insurer’s payoff when restricted to a finite set of contracts will converge

to its unrestricted counterpart as the number of contracts grows. It is silent, however, on how

quickly this will occur. We illustrate and investigate this result by computing optimal menus on

38The contracts’ deductibles, coinsurance rates, and out-of-pocket maximums are: $5,846, 40%, $7,500 for Bronze;
$3,182, 27%, $5,000 for Silver; and $1,125, 15%, $2,500 for Gold. In our population of consumers, the actuarial
value of the five contracts are: 0.40, 0.49, 0.61, 0.79, and 1.00.
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Figure 2. Potential Contracts
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Notes: The figure shows our focal set of allowable contracts. The base
level of coverage x0 provided by the government is the Catastrophic
contract.

an increasingly dense set of allowable contracts. Figure 2 depicts a set of five allowable contracts,

spaced at $2,500 out-of-pocket maximum intervals between the minimum and maximum levels

of coverage. We increase (and decrease) the density of this potential contract space by varying

the number of contracts used to span this range. We move from just two contracts (in which

case there is just Catastrophic and full insurance) to 65 contracts (in which case 15 contracts are

added between each of the five original contracts.39 For each set of potential contracts, we solve

for the optimal menu that would be offered by three different insurers: a social planner with

no excess cost of funds, a planner with a 25 percent excess cost of funds, and a monopolist.40

Figure 3 plots insurer payoffs as a function of the number of contracts in the potential contract

space. While insurer payoffs are of course increasing in contract density, in practice the returns

to additional density are small. We find that after five contracts, the gains from moving to 65

contracts do not exceed $19 per household per year for any insurer. After nine contracts, gains

do not exceed $10.41

There are, however, economically meaningful gains from moving between two and five con-

tracts. Over this range, the social planner facing an excess cost of funds can increase social

surplus by $177 per household per year, and a monopolist can increase its profits by $289. For

the social planner, these gains reflect the ability to find a plan that more closely matches the

tastes of consumers in the population. For the monopolist, these gains reflect this same increase

in potential gains from trade, as well as the ability to more effectively screen consumers and

thereby extract greater rents from the market. Our results suggest that while only a modest

39We increase the set of allowable contracts by successively adding a contract between each pair of adjacent
contracts. We proceed in this iterative manner so that under successively “dense” contract spaces, all previously
allowable contracts remain allowable.

40Optimal menus are calculated using a numerical algorithm that relies on the necessary condition derived in
Section 3.3. The algorithm is described in detail in Online Appendix B.8.

41These results are consistent with both Marone and Sabety (2022) and Ho and Lee (2021), who find that only a
limited number of contracts are sufficient to capture almost all the available surplus in their settings.
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number of contracts are needed to closely approximate the limiting environment, there are po-

tentially meaningful consequences of over-restricting the contract space. Of course, the precise

number of contracts at which payoffs flatten out may vary across settings, in particular with the

size of the range between base coverage and full insurance.

Figure 3. Convergence
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Notes: The figure shows optimal insurer payoffs as a function of the number of contracts used
in the potential contract space. Insurer payoffs are reported on a per-consumer per-year basis,
and are measured relative to allocating all consumers to the Catastrophic contract.

Consistent with Theorem 2, we also find that the optimal premium schedules and therefore the

optimal allocations themselves converge as the density of the contract space increases. In the case

of the monopolist insurer, consumer surplus also converges alongside producer surplus. Online

Appendix Figure B.2 depicts the convergence of allocations. As the density of the contract space

increases, the insurers “fill in” in the neighborhood of their desired allocation under a sparser

contract space. All numerical results are thus quite robust to the density of the contract space.

5.3 Performance of the Reformulated Problem

Given the speed of convergence, we proceed with five contracts, which enables a simple presenta-

tion of results. We next investigate how well the reformulated version of the problem (presented

in Section 4) approximates the true problem (presented in Section 2). For our three focal in-

surers, we solve the true problem P as well as reformulated problem P̃ . Table 3 reports these

results. Specifically, it reports the optimal premium schedule, the associated allocations, and the

associated insurer payoff.

Recall that the condition under which the two versions of the problem coincide is that consumer

payoffs are quasiconcave in coverage level at the optimal menu under the true problem P , and

that the solution under P̃ provides a lower bound on the optimal payoff. The final column of

Table 3 reports the fraction of consumers for whom the given price schedule is quasiconcave

consistent. We find that in every case, it holds for nearly all consumers. With respect to the
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Table 3. Performance of the Reformulated Problem

Premiums Allocations Insurer Payoff
$000s Pct. of households $000s

Insurer Brnz. Slvr. Gold Full Cstr. Brnz. Slvr. Gold Full Π Pct. QC

Social planner

Solution to P 0.16 0.32 0.67 3.21 <0.01 – <0.01 1.00 – 1.823 1.00

Solution to P̃ 0.13 0.30 0.68 3.19 <0.01 – <0.01 1.00 – 1.823 1.00

Social planner, 25% ECPF

Solution to P 1.53 2.80 4.64 7.15 0.14 <0.01 0.13 0.74 – 1.659 0.91

Solution to P̃ 1.32 2.85 4.73 7.23 0.13 0.03 0.13 0.71 – 1.655 0.99

Monopolist

Solution to P 2.02 4.09 6.46 9.02 0.39 0.03 0.32 0.26 – 0.745 0.96

Solution to P̃ 2.00 4.13 6.50 9.00 0.38 0.06 0.29 0.26 – 0.745 0.99

Notes: The table reports the premium schedules ρ chosen by insurers with different objective functions when
solving the two formulations of the menu design problem: the true problem P and the reformulated problem P̃ .
The table also reports the associated allocations and insurer payoffs. The insurer payoff Π is the objective of
problem P , meaning consumers globally optimize with respect to prevailing premiums. Payoffs are expressed on
a per household per year basis, and are measured relative to the allocation of all consumers to the Catastrophic
contract. The final column (Pct. QC ) reports the percent of consumers for whom the premium schedule is
quasiconcave consistent.

reformulated problem, we find that the solutions are QC for over 99 percent of consumers. With

respect to the true problem, we find slightly more frequent violations of quasiconcavity, indicating

returns to bundling adjacent coverage levels for some consumers. Even so, the gains available

from doing so are economically small: at most $4 per household per year (in the case of the social

planner facing an excess cost of funds).

These findings show that in this population and this set of potential contracts, the reformulated

problem is an excellent approximation to the true problem. All of the analysis in Section 4 is

therefore applicable in thinking about the solution. Moreover, our convergence results in Section

5.2 show that this set of 5 potential contracts is a good approximation of the solution under

as many as 65 potential contracts, suggesting that even if quasiconcave consistently were more

likely to fail if we added contracts, doing so is not necessary to capture the first-order economic

forces at play.

We propose the following procedure to applied researchers aiming to analyze a problem of this

type. Begin with a fixed set of contracts, at a density supposed to be sufficient for the purpose

at hand. Our results suggest this need not be excessively many contracts, but this likely involves

some experimentation, as in Figure 3. Then solve the reformulated problem P̃ , and evaluate the

percentage of consumers for whom the resulting premium schedule is QC. If the solution is not

QC for a substantial number of consumers, begin iteratively dropping contracts and re-solving

until a sufficient level of quasiconcave consistency is reached.42 At this point, solve the true

problem using the current set of potential contracts. If the payoffs between the two versions of

the problem are within an acceptable tolerance, then the reformulated problem can be confidently

used for further analysis. In the following subsections, we show what further analysis might look

like.

42Our graphical analysis in the next subsection provides some guidance for determining which contracts are creating
problems.
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Graphical Analysis. Figure 1 described how to solve the insurer’s problem graphically on a

single incremental coverage level. When considering more than two potential contracts, there are

more increments to consider. Figure 4 demonstrates how to carry out the graphical analysis on

all increments simultaneously, in order to solve visually for the optimal menu across the full set

of potential contracts. The four panels represent the “markets for incremental coverage” on each

of the four margins between our five contracts. Each panel depicts the marginal willingness to

pay curve WTP for the given coverage level increment, the associated marginal revenue curve

MR, and the marginal cost curve MC associated with providing that coverage level increment.43

Figure 4. Illustration of Graphical Analysis for Monopolist and Social Planner
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(c) Silver vs. Bronze
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(d) Bronze vs. Catastrophic
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Percentile of consumers by marginal WTP

Notes: The figure illustrates the graphical analysis of the reformulated problem. Each panel represents the “market
for incremental coverage” between each pair of adjacent contracts. The vertical axes are measured in dollars. The
horizontal axes report the percentage of consumers choosing a given incremental level of coverage. Consumers are
ordered on the horizontal axes according to their marginal willingness to pay for each coverage level increment.
The solid line (WTP ) represents consumers’ willingness to pay, the dotted line (MC) represents the marginal cost
curve, and the dashed line (MR) represents a monopolist’s marginal revenue curve. The MC and MR curves are
constructed as connected binned scatter plots using 100 points.

43Consistent with our baseline formulation of the model, we have implemented “incremental” pricing here in that
the insurer’s cost of providing Bronze coverage is simply the incremental cost over providing Catastrophic (and
not the full cost of providing Bronze). If instead we implemented “total” pricing, the only change to Figure 4
would be that the MC curve on the margin between Bronze and Catastrophic would shift up by an amount
equal to the cost of supplying the Catastrophic contract. This would have the effect of substantially lowering
the insurer’s optimal quantity on that increment, likely introducing violations of quasiconcave consistency.
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To solve the insurer’s problem, one simply needs to find the intersection of the marginal

benefit and marginal cost curves in each panel. While all insurers have the same marginal cost

curves, marginal benefit curves depend on the insurer’s objective. As discussed in Section 4.3, a

monopolist’s marginal benefit curve is the marginal revenue curve. The quantities at which MR

intersects MC in each panel therefore reveal the fraction of consumers to whom the monopolist

wishes to provide that coverage level increment. For example, at the increment between Bronze

and Catastrophic coverage, marginal revenue exceeds marginal cost for about the first 60 percent

of consumers, consistent with the fact that we see the monopolist optimally allocating 61 percent

of consumers to coverage above the Catastrophic contract (c.f. Table 3). The associated optimal

incremental premium ($2,021) can then be read from the value of the willingness to pay curve

at this quantity. At the increment between Gold and Silver coverage, marginal revenue exceeds

marginal cost for about the first 25 percent of consumers, consistent with the fact that the

monopolist optimally allocates roughly this fraction of consumers to Gold coverage or above.

Since the monopolist optimally allocates 61 percent of consumers to coverage above Catastrophic,

it excludes the remaining 39 percent from the market for incremental coverage.44 The same

exercise can be repeated for a social planner with zero cost of funds using the intersections of

the WTP and MC curves.

The graphical analysis in Figure 4 also provides a visual test of quasiconcave consistency

under the solution to the reformulated problem. Recall that if a price schedule is QC for a given

consumer, the consumer only purchases a given coverage level increment so long as they have

also purchased every lower coverage level increment. They will not “skip” any coverage level

increment. A price schedule that is QC for all consumers will therefore have two properties: (i)

incremental quantities q̃k will be decreasing in coverage level, and more specifically, (ii) the set

of consumer types that purchase higher coverage level increments will be a subset of those that

purchase lower coverage level increments. Property (i) can be assessed visually in Figure 1. For

example, for the monopolist, the intersection between MR and MC occurs further and further

to the right as one progresses from Panel (a)–(d) (i.e., as coverage level decreases).

For any price schedule that satisfies property (i), property (ii) will hold so long as the posi-

tion of consumers on the demand curve does not change too much across different coverage level

increments.45 Violations of this property can arise when different consumers’ willingness to pay

are driven by different things—for example, the value of risk protection versus an expected re-

duction in out-of-pocket spending—because the rate at which different components of willingness

to pay increase in coverage level can be quite different. The same consumer may therefore be

located high on the demand curve for one coverage level increment, but low on the demand curve

44Who are these consumers? Understanding the sorting of consumers with multidimensional types to contracts is
notoriously difficult, since the distribution of types can in principle exhibit an arbitrary dependence structure.
Inspection of Online Appendix Figure B.1, however, provides some insight into these patterns. The figure shows
that the lowest willingness-to-pay consumers in the population are substantially healthier and also less risk averse
than the average consumer in the population. Since incentive compatibility dictates that these consumers would
choose the least coverage, it is these consumers that are excluded under the monopolist’s optimal allocation.

45It is not necessary for consumers’ position on the demand curve to be exactly consistent across coverage level
increments because a given price schedule will only be screening consumers across (at most) the number of fixed
contracts available. Whole sections of the demand curve will therefore choose the same contract, and consumers
that have moved position slightly within that section will not cause a violation of property (ii).
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for another.46 With multidimensional consumer types, this type of reordering is almost sure to

happen to some extent, but the extent to which it happens is ultimately an empirical question.

In practice, we find that violations of property (ii) are rare (c.f. Table 3).

5.4 Welfare

Unsurprisingly, social welfare is lower under monopoly than under the social planner’s solution.

We now quantify these welfare differences and show how the reformulated problem can be used

to evaluate the impacts of various policy interventions.

Table 4 reports outcomes under a set of benchmark cases, under the optimal menus chosen by

each of our three focal insurers, and under a set of policy interventions. In each case, the table

reports welfare outcomes, spending outcomes, and allocations. The welfare outcomes are average

per-household per-year social surplus (SS ), consumer surplus (CS ), and producer surplus (PS ),

each measured relative to the allocation of all consumers to the Catastrophic contract. The

spending outcomes are average per-household per-year government spending (Gov), premiums

(Prem), and expected out-of-pocket spending (OOP).

Table 4. Welfare Outcomes and Policy Simulations

Welfare outcomes Spending outcomes Allocations
$000 per household $000 per household Pct. of households

Scenario SS† CS† PS Gov Prem OOP Cstr. Brnz. Slvr. Gold Full

Panel A. Benchmarks

* First best 1.86 1.86 – – 9.75 1.85 <0.01 0.01 0.23 0.56 0.20
Full insurance for all 1.74 1.74 – 11.90 – – – – – – 1.00
Minimum coverage for all – – – 5.64 – 5.36 1.00 – – – –
Competitive equilibrium 1.02 1.02 – 5.64 1.23 4.27 0.07 0.81 0.12 <0.01 <0.01

Panel B. Optimal menus

Social planner 1.82 1.82 – 9.09 0.77 1.80 <0.01 – <0.01 1.00 –
Social planner, 25% ECPF 1.66 1.66 – 5.60 3.80 2.08 0.14 <0.01 0.13 0.72 0.01
Monopolist 1.08 0.33 0.74 5.64 3.07 3.26 0.39 0.05 0.28 0.28 –

Panel C. Policy interventions

(i) Restrict which plans allowed 0.94 0.48 0.46 5.64 4.49 1.70 0.46 – – – 0.54
(ii) Adjust base coverage 1.82 1.82 – 9.86 – 1.80 – – – 1.00 –
(iii) Linear taxes/subsidies 0.74 0.64 0.10 5.15 2.70 3.44 0.58 0.04 – 0.38 <0.01
(iv) Nonlinear subsidies 1.30 0.48 0.82 5.78 3.55 2.79 0.30 0.01 0.28 0.42 –

Notes: The table shows welfare outcomes, spending outcomes, and allocations under various scenarios. Welfare
is evaluated using a zero excess cost of public funds. The first set of columns reports social surplus (SS),
consumer surplus (CS), and producer surplus (PS) in thousands of dollars per household per year. Note that
consumer welfare is normalized to zero at the Catastrophic contract, and accounts for the tax burden associated
with government spending. The second set of columns reports expected government spending (Gov), premium
spending (Prem), and expected out-of-pocket spending (OOP), again in thousands of dollars per household per
year. The final set of columns reports the percentage of households allocated to each contract. †Relative to
allocating all consumers to the Catastrophic contract when there is no excess cost of public funds (ECPF).

Panel A presents the benchmark cases, which serve as useful points of comparison. The four

benchmarks are (i) the first best allocation of consumers to contracts (which can be achieved only

with type-specific pricing), (ii) the allocation of all consumers to the full insurance contract, (iii)

the allocation of all consumers to the Catastrophic contract, and (iv) the perfectly competitive

46Recall Rochet and Stole’s highlighting of positively correlated order statistics.
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outcome. In the first three benchmarks, we assume all surplus accrues to consumers. For the

fourth, we calculate the competitive equilibrium proposed by Azevedo and Gottlieb (2017). Allo-

cating all consumers to their socially efficient contract (the “first best”) results in social surplus

that is $1,860 per household per year higher than allocating all consumers to the Catastrophic

contract. Allocating all consumers to full insurance results in social surplus of $1,743. The com-

petitive outcome features substantial unravelling, but as few consumers are fully excluded, still

generates a large amount of social surplus.

Panel B then reports outcomes at the optimal menus chosen by our three focal insurers. Social

surplus under a planner facing no excess cost of public funds is $1,825 per household per year.

Under a monopolist, social surplus falls to $1,081, and consumer surplus falls to $330. Consistent

with the theoretical results in Sections 4, the monopolist provides less coverage than the social

planner, uses more contracts in its optimal menu, and excludes more consumers from the market.

When the insurer is a planner facing an excess cost of public funds, it begins behaving somewhat

more like the monopolist, in that it now places more weight on insurer profits than on consumer

surplus.47 As the excess cost of funds increases from 0 to 0.25, the planner begins to both screen

and exclude, and the optimal amount of coverage provided decreases. A similar logic can be

applied to an employer. If it weighted consumer surplus and health insurance costs equally, its

optimal menu would coincide with the planner facing zero excess cost of funds. Yet absent the

tax exclusion for employer-sponsored insurance, compensating employees with health insurance

would become more expensive, leading it to act more like a planner facing an excess cost of funds.

Interestingly, social surplus is higher under the monopolist relative to a perfectly competitive

market. This could not happen in a one-contract setting absent substantial moral hazard (Ma-

honey and Weyl, 2017). Though the monopolist indeed constrains output relative to a social

planner, output is even further constrained by unravelling in the competitive equilibrium. Ex-

amining contract-by-contract markups provides some insight (see Online Appendix Table B.1).

While competitive insurers must break even on every contract, the monopolist can internalize

pricing externalities that one contract has on the profitability of others. At its optimal menu,

the monopolist chooses a 457 percent markup on Bronze coverage, diverting many consumers

to higher coverage. In a one-contract example, the monopolist has no such tool at its disposal

(as there are no other contracts on which to internalize externalities). That a monopolist can

increase efficiency in selection markets is consistent with Diamond (1992), who suggests that a

regulator of a competitive market may prefer to auction off the right to serve the market as a

monopolist instead of permitting free entry and competition to unravel the available gains from

trade.48 Of course, the monopolist captures the majority of the surplus it generates. Consumers

are better off under competition.

We note that all of these numerical results persist qualitatively in a world without moral

hazard. In a population of consumers identical to our focal population, but without moral hazard

47Recall that in our model, a social planner with a cost of public funds τ corresponds to insurer objective weights
of (1, τ, τ). We can thus think of an increase in the cost of public funds as a decrease in the weight on consumer
surplus.

48It is also consistent with Veiga and Weyl (2016), who suggest that market power may increase efficiency in
insurance markets relative to perfect competition.
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(ω ≈ 0 for all consumers), the social planner optimally pools all consumers at full insurance. The

monopolist again provides less coverage, screens consumers across more contracts, and excludes

some consumers from the market entirely.

5.5 Policy Analysis

Panel C of Table 4 reports the impact of strategies a regulator might use to intervene on behalf

of consumers in a monopoly market. These strategies are: (i) banning the monopolist from

offering certain contracts; (ii) raising the level of base coverage; (iii) linear taxes or subsidies

(constant for each consumer that obtains coverage); and (iv) nonlinear subsidies (provided only

on additional consumers that obtain coverage). In each case, we assume the regulator aims

to maximize consumer surplus, taking into account the tax burden associated with government

spending (which is available at zero excess cost).

Policies (i) and (ii) are straightforward to implement in our numerical simulations. The set

of options the regulator has in each case is enumerable, meaning we can simply solve the mo-

nopolist’s problem a finite number of times and choose the option under which consumers fare

best. Policies (iii) and (iv), on the other hand, are more complex. Supposing that the taxes (or if

negative, subsidies) can be continuous, it is not possible to enumerate all possible interventions

the regulator could make. Solving for the regulator’s optimal set of taxes therefore involves a

nested optimization routine in which the regulator chooses a vector of taxes, and the monopolist

chooses an optimal menu given those taxes. Unlike in a perfectly competitive environment, there

is no closed form way in which to map changes in the vector of taxes into the insurer’s choice

of optimal menu. The ability to approximate the monopolist’s optimal menu therefore becomes

extremely valuable in solving for the optimal vector of taxes in finite time.

Under policy (i), the regulator simply chooses which (if any) contracts the monopolist is banned

from offering. This requires no additional government spending. Banning a given contract in

effect forces the monopolist to “bundle” two adjacent coverage level increments. In the language

of the graphical analysis, this would mean vertically summing two adjacent coverage level incre-

ments and re-solving for the optimal quantity on that combined increment. This unambiguously

hurts the monopolist (given that it has less flexibility), but has the potential to benefit con-

sumers. We find that in our population, the optimal policy is to ban the Bronze, Silver, and

Gold contracts, forcing the monopolist to maximally bundle. While this strategy is effective in

shifting surplus to consumers, it also increases the amount of exclusion in the market (by 7 per-

centage points relative to the unregulated monopoly outcome). This results in a redistribution

of consumer surplus from lower willingness-to-pay households (who are now excluded) to higher

willingness-to-pay households (who now obtain full insurance).49

Policy (ii) considers the case in which the regulator can raise the base level of coverage x0,

allowing it to shrink the size of the market served by the monopolist. This strategy will not

always allow the regulator to reach the optimal feasible allocation (since the optimal menu may

49This result is consistent with recent analysis by Gottlieb and Moreira (2023), who describe this as a tension
between “distortion at the bottom” and “distortion at the top.”
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involve screening), but it will always be effective at preventing under-insurance in the market. In

our setting, the regulator can in fact restore maximal consumer surplus by raising base coverage

to the level of the Gold contract. This solution can be read directly off the graphical analysis in

Figure 4. Since the demand curve lies everywhere above the marginal cost curve on all increments

below full insurance, a planner facing zero excess cost of funds will clearly find it optimal to raise

base coverage up through each of those increments. Once consumers receive the Gold contract for

free, the monopolist cannot profitably offer the full insurance contract, and therefore effectively

exits the market.50

Under policy (iii), the regulator has the ability to levy taxes or subsidies that are linear in

the number of consumers served. Contracts can still be banned (via an infinite tax), but the

regulator can now also mediate prices in a more subtle way. The approximation allows us to

solve this problem numerically.51,52 We find that the regulator’s best course of action is to tax

the monopolist at every incremental coverage level. The intuition for this result is that supply is

fairly inelastic at the monopolist’s optimal menu, any subsidization would large be a transfer to

the monopolist, while any tax is largely a transfer towards the government (and thus consumers).

There is still some effect on quantity, so this strategy does lower the average level of coverage

in the market. Taken together, consumer surplus derived from insurance coverage is reduced by

$178, but the consumer’s tax burden falls by $493. On net, consumer surplus increases by $315

per household per year relative to the unregulated monopoly outcome. While consumer surplus

(as measured) does increase, linear taxes/subsidies are an ineffective tool for increasing coverage

levels in a monopoly market. Because subsidies must be paid on all consumers served, increasing

quantity is prohibitively expensive.

Under policy (iv), we therefore consider a policy in which the regulator is able to announce that

subsidies are only available to the monopolist on marginal consumers. That is, the subsidy policy

takes as an input the monopolist’s unregulated optimal allocation, and applies subsidies only to

additional consumers served. In this way, the regulator avoids paying subsidies on inframarginal

consumers. We find that with this policy tool, the regulator optimally raises the level of coverage

obtained in the market. Consumer gains from higher coverage amount to $298 per household

per year, while government spending increases by only $143 per household per year. On net,

consumer surplus increases by $155 per household per year relative to the unregulated monopolist

outcome.

Our results highlight the challenges associated with regulating a non-competitive insurance

market, echoing findings in applied work such as Tebaldi (2022) and Jaffe and Shepard (2017).

50The monopolist cannot profitably offer full insurance when Gold coverage is free for the same reason the full
insurance contract was not part of the social planner’s optimal menu in the first place: the high willingness-to-pay
consumers are not willing to pay their own marginal cost for incremental coverage.

51In particular, we allow the regulator to optimize over a vector of taxes that lies in R5. At each candidate
vector, we approximate the monopolist’s best response (its optimal menu) using the solution to the reformulated
problem. The optimization routine converges in approximately 10,000 iterations. Within each iteration, it takes
seconds to solve the reformulated problem, but would take hours to solve the monopolist’s true problem.

52Using the analytical solution to the reformulated problem, we are also able to derive a closed-form expression for
the impact of a tax on any single incremental coverage level. The logic follows directly from how one would think
about the impact of an excise tax within the graphical supply-demand framework, which is useful for providing
intuition. We provide and discuss this derivation in Online Appendix B.9.
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While linear taxes or subsidies are sufficient for restoring the optimal feasible allocation in a com-

petitive market (Azevedo and Gottlieb, 2017), the monopolist’s ability to strategically respond

to such an intervention renders it far less useful.

6 Conclusion

We analyze a principal-agent model with multidimensional private information that is both gen-

eral and well-suited to understanding optimal menu design in health insurance markets. Our

model encompasses the problems facing a utilitarian social planner, a monopolist, or an insurer

with any other objective weighting between consumer surplus, government spending, and profits.

Our analysis thus extends the analytical characterization of this class of health insurance prob-

lems beyond the perfectly competitive setting (Azevedo and Gottlieb, 2017). In order to capture

the many complexities of the health insurance setting, we make few assumptions on primitives,

and ask what we can (and cannot) learn generally about the problem. Our approach thus stands

in contrast to much of the existing theoretical literature on multidimensional screening, where

parameterizations are often highly restrictive. The theoretical tools we develop can be used

to describe the optimal menu of contracts and to study positive trade, optimal exclusion, and

incentives to screen.

We also further develop the “demand-profile” approach to multidimensional screening prob-

lems. We show how this approach can be applied in a selection market, as well as how its

application sheds light on when multidimensional screening problems can be approximately in-

terpreted as a series of one-dimensional problems. Our results provide the conditions for how

and when the familiar graphical analysis of health insurance markets introduced by Einav et al.

(2010a) can be extended to an arbitrary number of vertically-ordered contracts. In the spirit of

the original analysis, we view this development as a useful tool with which one can understand

the basic theory of multidimensional screening in selection markets with endogenous product

quality and the associated implications for welfare and public policy.

Finally, we quantify the magnitudes of theoretically identified effects and use a numerical

model to evaluate and illustrate a number of our key results. We find that only a small number

of contracts are needed to capture the key economic features of the problem, but that over-

restricting the contract space (for example to only two contracts) does have material implications.

We also find that in our setting, the reformulated problem provides an excellent approximation

of the true problem, and therefore represents a powerful tool for understanding its solution and

carrying out policy counterfactuals. We view further exploration of the validity of the demand-

profile approach in other empirical settings to be of prime interest.

A number of caveats are in order. First, while our assumption of a single principal is appropriate

when thinking about a government or a monopolist, there are many interesting settings in which

the market is oligopolistic. Though our results do not speak to such settings, the tools developed

here form a basis for a new direction of theoretical exploration. Second, the assumption of CARA

preferences crucially suppresses interaction between contract premiums and consumer valuations,

and there is good reason to believe that these effects may be important, particularly at lower
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levels of coverage than we permit in our numerical analysis. As we would no longer be able

to work with quasi-linear utility, relaxing this assumption would require a large technical leap.

Third, while our insurer objective function is quite flexible, it does not permit differential welfare

weights on different types of consumers, something that is likely of central policy interest (as well

as directly related to the question of income effects). We view these issues as exciting directions

for future work.
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Appendices

Appendix A Theory

The following lemma will be used repeatedly. Its proof is in Online Appendix B.3.

Lemma 1 The best-response correspondence X(ρ, θ) is upper hemicontinuous in ρ and θ. The

consumer’s value function V (ρ, θ) ≡ maxx∈[0,1](v(x, θ)− ρ(x)) is continuous.53

A.1 Proof of Theorem 1

Recall that by Part (i) of Proposition 3, for any given (ω, F ) and ρ, X(ρ, ω, ·, F ) is single-valued

G(·|ω, F )-almost everywhere. Therefore, we can without ambiguity take any selection υ(·) from

X(ρ, ·, ω, F ) and write

Π(ρ, ω, F ) =

∫
S(ρ(υ(ψ)), υ(ψ), ψ, ω, F )dG(ψ|ω, F ).

as the expected payoff to the insurer from premium schedule ρ given (ω, F ), so that the designer’s

problem is simply to maximize
∫

Π(ρ, ω, F )dG (ω, F ) by choice of ρ subject to ρ(x0) = 0.

Let x = xk, and let ρε be the premium schedule in which ρε(x′) = ρ(x′) for x′ ≤ x, and

ρε(x′) = ρ(x′) + ε for x′ > x. Let

∆(ω, ψ, F ) = max
k′>k

(v(xk
′
, ω, ψ, F )− ρ(xk

′
))−max

k′≤k
(v(xk

′
, ω, ψ, F )− ρ(xk

′
)),

noting that ∆ is strictly increasing in ψ and when F moves in an MLRP direction by Proposition

3 Parts (i) and (ii). Thus in particular, ∆ strictly increases in the second coordinate of θ, and

so since G̃ has a density g̃, it follows that it is either ∆(ω, ψ, F ) = 0 or ∆(ω, ψ̄, F ) = 0 only for

a zero G-measure set of (ω, F ). Fix (ω, F ) such that 2BRP holds and neither ∆(ω, ψ, F ) = 0

nor ∆(ω, ψ̄, F ) = 0, and suppress (x, ω, F ) in what follows. Let us define ψ̂ as the type dividing

those who choose strictly above x facing ρ, and, in a small abuse of notation, write ψ̂(ε) as the

dividing type facing ρε. To formalize this, if ∆(ω, ψ, F ) > 0, so that even ψ strictly prefers an

action strictly above x to any action at or below x, then ψ̂ = ψ and for ε small, ψ̂(ε) = ψ as well.

If ∆(ω, ψ̄, F ) < 0, so that even ψ̄ strictly prefers an action below x to one strictly above x, then

ψ̂ = ψ̄ and for ε small, ψ̂(ε) = ψ̄ as well. Finally, if ∆(ω, ψ, F ) < 0 < ∆(ω, ψ̄, F ), then ψ̂ is given

by ∆(ω, ψ̂, F ) = 0, and ψ̂ is given by ∆(ω, ψ̂(ε), F ) = ε. Let x̄ ≡ x̄(ψ̂, ρ) and x ≡ x(ψ̂, ρ).54 By

2BRP, these are the only best responses for ψ̂ facing ρ. Thus, by upper hemicontinuity of the

best response correspondence X in ρ, for small ε no type near ψ̂ will choose anything other than

x̄ or x facing ρε. Hence for ε small and positive, types between ψ̂ and ψ̂(ε) will switch from x̄ to

53To see why it is not an immediate consequence of the Theorem of the Maximum, note that v(x, θ)− ρ(x) is not
continuous in ρ.

54Note that x̄ or x need not be adjacent to x; it may be that the optimal choice jumps past multiple quality levels
as ψ passes through ψ̂.
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x and for ε small and negative, types between ψ̂(ε) and ψ̂ switch from x to x̄, while other types

will maintain their previous behavior.

Where ψ̂ is interior, the defining condition for ψ̂ (ε) for ε small (positive or negative) is thus

v(x, ψ̂(ε))− ρ(x) = v(x̄, ψ̂(ε))− ρ(x̄)− ε,

and so by the Implicit Function Theorem,

ψ̂ε(ε) =
1

vψ(x̄, ψ̂(ε))− vψ(x, ψ̂(ε))
,

where since ψ̂(0) = ψ̂, we have ψ̂ε(0) = 1/(vψ(x̄, ψ̂) − vψ(x, ψ̂)) ∈ (0,∞), using vψx > 0. Of

course, if ∆(ω, ψ, F ) > 0 or ∆(ω, ψ̄, F ) < 0, then ψ̂ε(0) = 0. Now,

Π(ρε)−Π(ρ) = (wI − wC)(1−G(ψ̂(ε)))ε+

∫ ψ̂(ε)

ψ̂
(S(ρ(x), x, ψ)− S(ρ(x̄), x̄, ψ))dG(ψ),

where this expression also makes sense when ε < 0 under the usual convention that
∫ b
a = −

∫ a
b

when a > b. Thus,

Πε(ρ
ε) = (wI−wC)(−g(ψ̂(ε))ψ̂ε(ε)ε+(1−G(ψ̂(ε))))+(S(ρ(x), x, ψ̂(ε))−S(ρ(x̄), x̄, ψ̂(ε)))g(ψ̂(ε))ψ̂ε(ε)

But, recall that S(p, x, θ) = S(x, θ)− (wI − wC)(v(x, θ)− p), and so,

S(ρ(x), x, ψ̂(ε))− S(ρ(x̄), x̄, ψ̂(ε))

= S(x, ψ̂(ε))− S(x̄, ψ̂(ε))− (wI − wC)(v(x, ψ̂(ε))− ρ(x)− (v(x̄, ψ̂(ε))− ρ(x̄)))

= S(x, ψ̂(ε))− S(x̄, ψ̂(ε)) + (wI − wC)ε,

where the second equality follows from the defining equation for ψ̂(ε). But then, substituting

and taking a limit, where ψ̂ is interior,

Πε(ρ
ε)|ε=0 = (wI − wC)(1−G(ψ̂))− S(x̄, ψ̂)− S(x, ψ̂)

vψ(x̄, ψ̂)− vψ(x, ψ̂)
g(ψ̂)

= (wI − wC)(1−G(ψ̂))− rg(ψ̂)

and so, reinstating (x, ω, F ), we have that Πε(ρ
ε, ω, F )|ε=0 = V(x, ω, F ). Recall also that when

∆(ω, ψ, F ) > 0 or ∆(ω, ψ̄, F ) < 0, then ψ̂ε(0) = 0 and so, since we defined r = 0 in this case, we

once again have Πε(ρ
ε)|ε=0 = (wI − wC)(1−G(ψ̂))− rg(ψ̂).

Finally, note from the previous displayed equation that (Π(ρε, ω, F ))ε|ε=0 is uniformly bounded

as we vary (ω, F ). In particular, by Cauchy’s Mean Value Theorem (CMVT), when ψ̂ is interior,

r is of the form Sx/vxψ for some x ∈ (x, x̄) and so is uniformly bounded. Thus, by Lebesgue’s
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Dominated Convergence Theorem (LDCT),(∫
Π(ρε, ω, F )dG(ω, F )

)
ε

∣∣∣∣
ε=0

=

∫
V(x, ω, F )dG(ω, F ).

and we are done, noting that the perturbation with ε > 0 is always feasible, while the perturbation

with ε < 0 is feasible as long as ρ(xk) < ρ(xk+1). �

A.2 Endogenizing Quality: Another Optimality Condition

We now derive an additional necessary condition that must hold if the insurer can also vary

the coverage levels of the contracts offered, in addition to their prices. This second condition

becomes relevant when the insurer is constrained in the number of contracts it can offer, but can

choose both their price and their generosity.

Consider the perturbation in which the insurer just raises (or reduces) the generosity of a

single contract, xk, replacing xk by xk + ε. Fix (ω, F ), and assume x is chosen by ψ in some

positive-lengthed interval (ψl, ψh). There are three effects. First, consumers who stick with x

generate a different amount of surplus than they did before, changing the insurer’s payoff by∫ ψh
ψl

(Sx − (wI − wC)vx)dG(ψ).

Second, some types immediately below ψl now choose the new contract x+ ε instead of their

previous choice, which was xl ≡ x(ψl). This has value vx(x, ψl)rl to the insurer, where if ψl is

interior, we define

(13) rl =
S(x, ψl)− S(xl, ψl)

vψ(x, ψl)− vψ(xl, ψl)
,

while if ψl = 0, we take rl = 0. In this expression, S(x, ψl) − S(xl, ψl) reflects the change in

the insurer’s payoff when the agent switches from xl to x + ε, with the utility of the switching

consumer type disappearing from the calculation because they are by definition indifferent. We

will show that the vx term and denominator of rl capture the speed at which the boundary

between those who switch and those who do not is moving.

Third, some types immediately above ψh will switch their choice down from x̄h ≡ x̄(ψh) to

x+ ε, with net effect −vx(x, ψh)rh, where

(14) rh =
S(x̄h, ψh)− S(x, ψh)

vψ(x̄h, ψh)− vψ(x, ψh)
.

if ψh is interior, and zero otherwise. Reintroducing the dependence of the various objects on

(x, ω, F ), the overall impact of the perturbation on the insurer’s payoff is is

W(x, ω, F ) ≡ −vx(x, ψh(x, ω, F ))rh(x, ω, F )g(ψh(x, ω, F )|ω, F )

+

∫ ψh(x,ω,F )

ψl(x,ω,F )
(Sx(x, θ)− (wI − wC)vx(x, θ))g(ψ|ω, F )dψ

+vx(x, ψl(x, ω, F ))rl(x, ω, F )g(ψl(x, ω, F )|ω, F ),
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where if for given (ω, F ), x is never chosen, then we take W(x, ω, F ) = 0.

We can now state the optimality condition associated with this perturbation. The proof is in

Online Appendix B.4.

Theorem 3 (Second Optimality Condition: Fixed Number of Contracts) Let (ρ, χ) be

optimal given
{
xk
}K
k=0

, and let ρ satisfy 2BRP. Then,
∫
W(xk, ω, F )dG(ω, F ) = 0 for k =

1, ...,K.

A.3 Optimality in the Continuum

In this section, we state the analogs to Theorems 1 and 3 when the insurer can offer a continuum

of contracts. The proof is in Online Appendix B.5.

Theorem 4 (Optimality Conditions: Continuum of Contracts) Let (ρ, χ) be optimal given

P, and let ρ satisfy 2BRP. Then, we have
∫
W(x, ω, F )dG(ω, F ) = 0 for all x, and

∫
V(x, ω, F )dG(ω, F ) ≤

0 except in a countable subset of [x0, 1] with equality if ρ(x′) > ρ(x) for x′ > x.

Technical Remark 4 (Main Perturbation in Continuum Case) To see why
∫
VdG = 0

need not hold for all x in Theorem 4, assume that for a given (ω, F ) there is ψJ where x(ψJ) <

x = x̄(ψJ). If one raises the premium of all contracts strictly above x, types just to the right of

ψJ will shift their choice from a little above x̄(ψJ) down to x, while if one lowers the premium

of all contracts strictly above x, types just to the left of ψJ will shift their choice from near

x(ψJ) to near x̄(ψJ). The appropriate expression for r (see (24) in Online Appendix B.5) thus

differs in the two cases, and if there is a positive-measure set of types having a jump ending at

x, there can be a difference between the left- and right-hand derivatives of payoffs with respect

to the perturbation. At the cost of significant extra notation, one can explicitly tie down these

derivatives, but the additional economic insight is small, especially given that this issue can only

occur for a countable set of x’s.

A.4 Proof of Positive Trade Result

Proposition 2 (Positive Trade) Assume that the insurer is a monopolist, that there is a con-

tinuum of contracts, that the government’s costs γG increase with consumers’ chosen level of

coverage, that F̄ is non-degenerate, and that x0 < 1. Then any optimal menu for the insurer

involves a strictly positive amount of trade. That is, the insurer sells contracts strictly greater

than x0 to a positive-measure set of types.

It suffices to show that strictly positive profit menus exist. Fix ψ̂ ∈ (0, ψ̄). Consider the menu

with a single item x > x0 priced at

p(x) = v(x, ψ̂, ω̄, F̄ )− v(x0, ψ̂, ω̄, F̄ ).
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This is accepted by all types in a neighborhood of (ψ̄, ω̄, F̄ ). Using that c(a∗, x)− c(a∗, x0) is in-

creasing in l, the cost of serving each customer is no more than
∫

(c(a∗(l, x, ω̄), x)−c(a∗(l, x, ω̄), x0))dF̄ .

So, the profit per customer is at least

J(x) ≡ v(x, ψ̂, ω̄, F̄ )− v(x0, ψ̂, ω̄, F̄ )−
∫
c(a∗(l, x, ω̄), x)− c(a∗(l, x, ω̄), x0))dF̄ .

Trivially, J(x0) = 0. But

Jx(x) = vx(x, ψ̂, ω̄, F̄ )−
∫

(−cx(a∗(l, x, ω̄), x)))dF̄−
∫

(ca(a
∗(l, x, ω̄), x0)−ca(a∗(l, x, ω̄), x)))a∗x(l, x, ω̄)dF̄ ,

and so,

Jx(x0) = vx(x0, ψ̂, ω̄, F̄ )−
∫

(−cx(a∗(l, x0, ω̄), 0)))f̄(l)dl.

We would thus be done if vx(x0, ψ̂, ω̄, F̄ ) >
∫

(−cx(a∗(l, x0, ω̄), x0)))dF̄ , since then, J(x) > 0 for

x just to the right of x0. But, from (5)

vx(x0, ψ̂, ω̄, F̄ ) =

∫
(−cx(a∗(l, x0, ω̄), x0)))m(l|x0, ω̄, ψ̂, F̄ )dl,

where m(·|x0, ω̄, ψ̂, F̄ ) strictly MLRP dominates f̄ . Hence, −cx(a∗(l, x0, ω̄), x0)) is a strictly

increasing function of l. �

A.5 Proof of Theorem 2

The following lemma tells us that for any given closed set P0 ⊆ P, if we take a sequence Pn of

increasingly fine approximation to P0 then anything the insurer can do in P0 can come arbitrarily

close what can be done in Pn.

Lemma 2 The insurer’s payoff Π(ρ) is continuous in ρ.

Proof We assert first that the set of θ where X(ρ, θ) is singleton valued has full G-measure. To

see this, note that by Proposition 3 (i), for each (ω, F ) the function v is strictly supermodular

in x and ψ, and so for each pair ψ′′ and ψ′ with ψ′′ > ψ′, the smallest best response at ψ′′ is at

least as large as the largest best response at ψ′, or formally,

inf X(ρ, ψ′′, ω, F ) ≥ supX(ρ, ψ′, ω, F ).

But then, for each (ω, F ), there is a countable set of values of ψ such that X(ρ, ·, ω, F ) is unique

except on this set (see Shannon, 1995). Since the distribution over ψ conditional on (ω, F ) is

atomless, it follows that with probability one conditional on (ω, F ), X(ρ, ·, ω, F ) is unique. Since

(ω, F ) was arbitrary, we are done.

Fix ρ̀ and ρ̀n → ρ̀, and fix any measurable selection χ̀(·) from X(ρ̀, ·) and χ̀n(·) from Xn(ρ̀, ·),
so that

Π(ρ̀n) =

∫
S(ρ̀n(χ̀n(θ)), χ̀n(θ), θ)dG(θ),

43



and similarly for Π(ρ̀). Let θ be any type for whom X(ρ̀, θ) has unique element x̀. Then,

χ̀n(θ)→ χ̀(θ) by Lemma 1. But, also from Lemma 1, V (ρ̀n, θ) = v(χ̀n(θ), θ)−ρ̀n(χ̀n(θ)) converges

to V (ρ̀, θ), and since v is continuous, v(χ̀n(θ), θ) converges to v(χ̀(θ), θ). But then, it follows that

ρ̀n(χ̀n(θ))→ ρ̀(χ̀(θ)). Hence, since S is continuous, S(ρ̀n(χ̀n(θ)), χ̀n(θ), θ)→ S(ρ̀(χ̀(θ)), χ̀(θ), θ).

But then, by LDCT, since S is bounded, and since the set of θ where X(ρ, θ) is singleton valued

has full G-measure, Π(ρ̀n)→ Π(ρ̀), and we are done. �

Proof of Theorem 2 Immediate from Lemmas 1 and 2. �

Theorem 2 provides an upper hemicontinuity result for the set of optimal solutions in our

problem as the set of allowable premium schedules is varied. A natural question is whether the

set of optimal solutions is lower hemi-continuous as well. Unfortunately, this is not true.

Example 1 Assume that the insurer has exactly two distinct optima ρ∗ and ρ∗∗ in P0 and that

Pn consists of some growing set of premium schedules where ρ∗ is always an element of Pn, but

ρ∗∗ is not. Then, the insurer has unique solution ρ∗ in each approximation. If a regulator prefers

ρ∗∗ to ρ∗, then the regulator is strictly harmed by the restriction to Pn, no matter how large is

n.

In this example, the insurer has two optima that imply different things in terms of, for example,

the payoff to the consumer. If the insurer has only one optimum, then everything must converge.

Our strong intuition is that only for very unusual examples will there be more than one optimum

in P0. The intuition is that while it is not unusual that the payoff to the insurer has multiple

peaks as one runs over P0, it would be surprising if for any given specification of G two of those

peaks had exactly the same height. A proof eludes us.

A.6 Equation (12) and the Analog of
∫
VdG = 0

Let ψ̃k(pk, ω, F ) = arg minψ
∣∣vk(ω, ψ, F )− pk

∣∣. Because vxψ > 0, ψ̃k(pk, ω, F ) is unique, and

any given type has marginal willingness to pay for xk greater than pk if and only if ψ is above

ψ̃k(pk, ω, F ).55 The following lemma uses this property to characterize Π̃k
pk

.

Lemma 3 We have

Π̃k
pk(pk) =

∫
Ṽk(pk, ω, F )dG(ω, F ),

where

Ṽk(pk, ω, F ) = (wI − wC)(1−G(ψ̃k(pk, ω, F )|ω, F ))

(15)

− ψ̃kpk(pk, ω, F )(wI(pk − γI,k(θ))− (wG − wI)γG,k(x0, θ))g(ψ̃k(pk, ω, F )|ω, F ).

55Since vxψ > 0, vk = v(xk, ω, ψ, F )− v(xk−1, ω, ψ, F ) =
∫ xk
xk−1 vx(x, ω, ψ, F )dx is strictly increasing in ψ.
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Note that Ṽ is the direct analog to V in this setting, since where ψ̃k
pk
6= 0,

ψ̃kpk(pk, ω, F ) =
1

vkψ(ω, ψ̃k(pk, ω, F ), F )
=

1

vψ(xk, ω, ψ̃k(pk, ω, F ), F )− vψ(xk−1, ω, ψ̃k(pk, ω, F ), F )
.

Proof of Lemma 3 We have that{
θ|vk(θ) ≥ pk

}
=
{

(ω, ψ, F )|ψ ≥ ψ̃k(p, ω, F )
}

and so,

Π̃k(pk) =

∫ ∫ ψ̄

ψ̃k(pk,ω,F )
Sk(pk, θ)g(ψ|ω, F )dψdG(ω, F ).

But then,

Π̃k
pk(pk) =

∫  ∫ ψ̄
ψ̃k(pk,ω,F )

Sk
pk

(pk, θ)g(ψ|ω, F )dψ

−ψ̃k
pk

(pk, ω, F )Sk(pk, ω, ψ̃k(pk, ω, F ), F )g(ψ̃k(pk, ω, F )|ω, F )

 dG(ω, F ).

But, Sk
pk

(pk, θ) = wI − wC , and if ψ̃k
pk

(pk, ω, F ) 6= 0, then vk(ω, ψ̃k(pk, ω, F ), F ) = pk and so,

evaluated at θ = (ω, ψ̃k(pk, ω, F ), F ),

Sk(pk, θ) = wI(pk − γI,k(θ))− (wG − wI)γG,k(x0, θ),

and the claimed expression follows. �

A.7 Proof of Proposition 1

Let vk = minω∈[ω,ω̄] v
k(ω, ψ, F ), noting that by Lemma 3, vk(θ) ≥ vk for all θ ∈ suppG, with

strict equality except on the G(ω, F )-zero-measure set where F = F . But, whenever pk <

vk(ω, ψ, F ), ψ̃k(pk, ω, F ) = ψ, and so, limpk↓vk ψ̃
k(pk, ω, F ) = ψ and limpk↓vk ψ̃

k
pk

(pk, ω, F ) = 0,

and thus limpk↓vk Ṽk(pk, ω, F ) = wI − wC . Further Ṽk(pk, ω, F ) is bounded on the compact set

[vk, vk + 1] × [ω, ω̄] × F , since all components of it are uniformly bounded (ψ̃kp in particular is

either equal to 0 or to 1/((xk − xk−1)vxψ(x, ω, ψ̃k, F )) for some x ∈ [xk−1, xk]). But then by the

Lebesgue Dominated Convergence Theorem,

lim
pk↓vk

∫
Ṽk(pk, ω, F )dG(ω, F ) =

∫
lim
pk↓vk

Ṽk(pk, ω, F )dG(ω, F ) = wI − wC > 0,

and so it follows that p̃k > vk. Since suppG is a rectangle, it follows that p̃k > vk for a

positive G-measure set of consumers, since this set includes a neighborhood of (ω̃, ψ, F ) for any

ω̃ ∈ arg minω∈[ω,ω̄] v
k(ω, ψ, F ). �
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Appendix B Online Appendix

B.1 Demand for Insurance

Proposition 3 (Properties of Insurance Demand) The consumer’s demand for insurance

satisfies the following properties for all x and θ: (i) vxψ > 0, and thus χ(ω, ·, F ) is increasing

in ψ; (ii) if {f(·|t)}t∈[0,1] is a parameterized family of densities ordered by strict monotone-

likelihood-ratio property (MLRP), then vxt > 0, and thus χ(ω, ψ, ·) is increasing in t;56 (iii) if

b(a, l, ω) = b̂(a − l, ω) and c is convex in a (including the case in which c is linear in a), then

vxω > 0, and thus χ(·, ψ, F ) is increasing in ω.

Proof In each case it suffices to prove the first assertion since the second follows from a standard

monotone comparative statics result.

(i) Recall that vx = −
∫
cxmdl, where since −cx(a∗(·, x, ω), x) is increasing, it is sufficient to

show that m satisfies strict MLRP in (l, ψ). But, from (4), for any x and ω, and for any ψh > ψl,

m (l|x, ψh)

m (l|x, ψ`)
= e(ψh−ψ`)(−z(l,x,ω))

∫
e−ψ`z(l

′,x,ω)f(l′)dl′∫
e−ψhz(l′,x,ω)f(l′)dl′

,

and so, by the definition of MLRP, it would be sufficient to show that z(·, x, ω) is strictly de-

creasing. But, from (1), and using the Envelope Theorem to ignore the effects on z via a, we

have that zl(l, x, ω) = bl(l, a
∗(l, x, ω), ω) < 0.

(ii) It is sufficient to show that m satisfies strict MLRP in (l, t). But, for th > t` we have

m(l|x, th)

m(l|x, t`)
=
f(l|th)

f(l|t`)

∫
e−ψz(l

′,x,ω)f(l′|t`)dl′∫
e−ψz(l′,x,ω)f(l′|th)dl′

,

since {f(·|t)}t∈[0,1] is ordered by strict MLRP.

(iii) It is easy to show that vω =
∫
bωmdl and thus vxω > 0 if and only if

(16)

∫
bωaa

∗
xmdl +

∫
bωmxdl > 0.

The first term is always strictly positive since baω > 0 and a∗x > 0. The second term can be written

as
∫
bω(mx/m)mdl. Now, differentiating (4) with respect to x yields mx/m = ψ(Em[zx] − zx),

and since zx = −cx and (−cx)l = −cxaa∗l > 0, it follows that mx/m is strictly decreasing in

l, single-crosses zero from above, and integrates to zero. But, when b = b̂ and c is linear in a,

(bω)l = 0. Hence, the second term in (16) is 0. �

Note that part (iii) includes the case in which c is linear in a (linear insurance contracts).

Technical Remark 5 (Demand for Insurance and ω) One can also show that χ(·, ψ, F ) is

increasing when F is dirac at 0.57 Beyond these cases, the comparative statics in ω are complex.

56A family of densities {r(·|t)}t∈[0,1] has the strict MLRP if r(s|th)/r(s|tl) is strictly increasing in s for all th > tl.
In this case we will say that the cdf R shifts in the strict MLRP sense.

57By (4) the cdf M is also degenerate at 0. Thus, vx(x, θ) = −cx(a∗(0, x, ω), x) and hence vxω = −cxaa∗ω > 0.
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One can show that vxω > 0 if and only if

0 <

(∫
bωmdl

)
x

=

∫
bωaa

∗
xmdl +

∫
bωmxdl,

where the first term in the last expression is strictly positive. But, as x increases, the cdf M

decreases (since as insurance improves, the marginal utility of income becomes more equal across

states), and when b(a, l, ω) = b̂(a − l, ω), (bω)l =s (a∗ − l)l. If c(·, x) is convex then sicker

individuals face a higher marginal cost of care, and so (a∗ − l)l ≤ 0, and
∫
bωmxdl is positive.

But, if c(·, x) is sufficiently concave, then the second term is negative and overwhelms the first

term.

B.2 Differentiability of Costs

In this section, we provide primitives for γI and γG to be almost everywhere differentiable with

bounded derivatives. We do so by restricting c to a class where we can tame the way in which

the consumer jumps from one a to another as l changes.

Assumption 2 For some finite κ̄, c(·, x) = minκ∈{1,...,κ̄} c̃ (·, x, κ) where for each κ, c̃ (·, x, κ) is

twice continuously differentiable, with baa(·, l, ω) − c̃aa (·, x, κ) strictly bounded away from zero,

and c̃a (a, x, ·) strictly decreasing.

That is, while c can have kinks, on each segment where it is differentiable, b− c is concave. An

example is when c (·, x) is piecewise linear for each x.

We also need a condition on how the marginal value of healthcare changes with ω and l.

Assumption 3 The ratio bωa(·, l, ω)/bla(·, l, ω) is strictly monotone (of either sign).

In the canonical example, bωa(·, l, ω)/bla(·, l, ω) = (a − l)/ω which is strictly increasing in a. In

general, Assumption 3 asks that bω(·, l, ω) is strictly either more or less concave than bl(·, l, ω).

Let A(l, x, ω) be the optimal correspondence of the consumer’s choice of a when the health

state is l, the contract is x, and the consumer’s taste for healthcare is ω. Assume that A has

2BRP: for all x, there is a finite subset of [ω, ω̄] such that except on this set, A(·, x, ω) has at

most two elements. Let us first provide primitives for 2BRP.

Lemma 4 Let Assumptions 2 and 3 be true. Then, A satisfies 2BRP.

Proof Let ã(l, x, ω, κ) = arg maxa(b(a, l, ω) − c̃(a, x, κ)) be the consumer’s best action facing

c̃(·, x, κ) and let z̃(l, x, ω, κ) be the associated value function. Since baa(·, l, ω) − c̃aa (·, x, κ) is

bounded below zero, ã(·, ·, ·, κ) is uniquely defined by ba(ã, l, ω) = ca(ã, x) and is continuously

differentiable. For example, the Envelope Theorem and the Implicit Function Theorem gives us

ãx(l, x, ω, κ) =
cax(ã, x)

baa(ã, l, ω)− caa(ã, x)
,
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which is uniformly bounded. Note that since c̃a (a, x, ·) is strictly decreasing, ã(l, x, ω, ·)is strictly

increasing. The consumer’s optimal choice is then given by maximizing z̃(l, x, ω, κ) over κ, and

then taking the associated ã(l, x, ω, κ). The consumer has more than one best response if and

only if z̃(l, x, ω, ·) has more than one maximizer.

For κ′′ > κ′, let l̃(x, ω, κ′, κ′′) be the l that solves z̃(l, x, ω, κ′) = z̃(l, x, ω, κ′′). The Envelope

Theorem, bal > 0, and ã strictly increasing in κ yield

z̃l(l, x, ω, κ
′) = bl(ã(l, x, ω, κ′), l, ω) < bl(ã(l, x, ω, κ′′), l, ω) = z̃l(l, x, ω, κ

′′),

and so l̃(x, ω, κ′, κ′′) is unique. A consumer with proclivity to spend on healthcare ω will be

indifferent between ã(l, x, ω, κ′) and ã(l, x, ω, κ′′) facing insurance quality x only if their health

realization is l̃(x, ω, κ′, κ′′). By the Envelope Theorem and the Implicit Function Theorem,

l̃ω(x, ω, κ′, κ′′) = − z̃ω(l̃, x, ω, κ′′)− z̃ω(l̃, x, ω, κ′)

z̃l(l̃, x, ω, κ′′)− z̃l(l̃, x, ω, κ′)
(17)

= −bω(ã(l̃, x, ω, κ′′), l̃, ω)− bω(ã(l̃, x, ω, κ′), l̃, ω)

bl(ã(l̃, x, ω, κ′′), l̃, ω)− bl(ã(l̃, x, ω, κ′), l̃, ω)

= −
∫ ã(l̃,x,ω,κ′′)

ã(l̃,x,ω,κ′)

bωa(a, l̃, ω)

bla(a, l̃, ω)

bla(a, l̃, ω)∫ ã(l̃,x,ω,κ′′)

ã(l̃,x,ω,κ′)
bla(a, l̃, ω)da

da,

where the last equality follows from the Fundamental Theorem of Calculus applied to numerator

and denominator, and by multiplying and dividing the integrand in the numerator by bal > 0.

That is, l̃ω(x, ω, κ′, κ′′) is an expectation of bωa/bla over the interval (ã(l̃, x, ω, κ′), ã(l̃, x, ω, κ′′)).

Consider the case bωa/bla strictly increasing. Then, by (17), if κ′ < κ′′ < κ′′′ then, since

ã(l̃, x, ω, ·) is strictly increasing, l̃ω(x, ω, κ′′, κ′′′)− l̃ω(x, ω, κ′, κ′′) > 0 (the it has sign opposite to

that of the strict monotonicity of bωa/bla). Thus, for each x, there is at most one ω such that

l̃(x, ω, κ′, κ′′) = l̃(x, ω, κ′′, κ′′′). But, l̃(x, ω, κ′, κ′′) = l̃(x, ω, κ′′, κ′′′) is a necessary condition for

ã(l, x, ω, κ′), ã(l, x, ω, κ′), and ã(l, x, ω, κ′′) to all be elements of A(l, x, ω). Since κ̄ is finite, there

are a finite set of triples κ′, κ′′, κ′′′ to check, and so there are, for each x, at most a finite set of

ω where there are more than two best responses at any l. �

Lemma 5 Let Assumption 2 hold. Let A have 2BRP. Then, for each x, and for any θ with ω

not in the exceptional set,
(∫ l̄

0 c (a∗(l, x, ω), x) f(l)dl
)
x

exists and is uniformly bounded.

Proof Fix x, and fix ω such that 2BRP holds. Then, we claim, there are 1 ≤ j̄ ≤ κ̄ points

0 = l0 < l1 < l2 < . . . < lj̄ = l̄, such that on (lj−1, lj) there is a unique best κj . The case j̄ < κ̄

occurs when the consumer chooses not to use some segments of c. By 2BRP, at lj , the two best

κ’s are κj and κj+1, with all other κ’s strictly worse. That is,

z̃(lj , x, ω, κj) = z̃(lj , x, ω, κj+1) > max
κ6=κj ,κj+1

z̃(lj , x, ω, κ).

Let K =
{
κ1, . . . , κj̄

}
⊆ {1, . . . , κ̄} be the set of indexes that ωuses given x.
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We claim that for all x′ in a neighborhood of x, ω chooses exactly the elements of K when

facing x′. To see this, note that any κ′ /∈ K is never an optimal choice for ω facing x. That is,

max
κ∈K

z̃(l, x, ω, κ)− z̃(l, x, ω, κ′) > 0.

This follows because if l ∈ (lj−1, lj) then the only optimal κ is κj , while if l = lj then the only

best responses are κj and κj+1. But, then, since both sides are continuous in l and x over the

bounded set of l and x, the same is true for all x′ in some neighborhood of x. Also, for any

κj ∈ K, choose any l̂ ∈ (lj−1, lj). Then, since

z̃(l̂, x, ω, κj) > max
κ6=κj

z̃(l̂, x, ω, κ),

the same is true on a neighborhood of x, and κj is sometimes chosen.

It follows that there are 0 = l0 < l1(x′) < l2(x′) < . . . < lj̄ = l̄ such that κj is chosen by ω

facing x′ on the interval (lj−1(x), lj(x)), where lj(x′) is defined by

z̃(lj(x′), x′, ω, κj) = z̃(lj(x′), x′, ω, κj+1).

But, as in the proof of Lemma 4, by the Envelope Theorem and the Implicit Function Theorem,

ljx(x′) is differentiable on a neighborhood of x with

ljx(x′) =
bωa(a, l

j(x′), ω)

bla(a, lj(x′), ω)

for some a ∈ (ã(l, x′, ω, κj), ã(l, x′, ω, κj). By assumption, this is bounded. We can then write

∫ l̄

0
c(a∗(l, x′, ω), x′)f(l)dl =

j̄∑
j=1

∫ lj(x′)

lj−1(x′)
c(ã(l, x′, ω, κj)f(l)dl,

and so the derivative of the rhs with respect to x evaluated at x = x′ is

(∫ l̄

0
c (a∗(l, x, ω), x) f(l)dl

)
x

=

j̄∑
j=1


ljx(x)c(ã(lj , x′, ω, κj), x′, κj)f(lj)

−lj−1
x (x)c(ã(lj−1, x′, ω, κj), x′, κj)f(lj−1)

+
∫ lj(x′)
lj−1(x′)

ca(ã(l, x′, ω, κj), x′, κj)ãx(l, x′, ω, κj)f(l)dl

 ,

each part of which is uniformly bounded. �

We can now show that γI(x, θ) and γG(x, θ) have the requisite differentiability properties.

Proposition 4 Let Assumptions 2 and 3 hold. Then, γI(x, θ) and γG(x, θ) are differentiable in

x for almost all θ, with γIx(x, θ) and γGx (x, θ) uniformly bounded.

Proof Consider any θ for which for which 2BRP holds for the relevant ω. Then, from above,∫
c(a∗(l, x, ω), x)dF (l) is differentiable with a uniformly bounded derivative. Taking the case

where c(·, x) is the identity shows that
∫
a∗(l, x, ω)dF (l) has the same property. But then, γG is

differentiable with a uniformly bounded derivative. Taking x = x0 then covers γI . �
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B.3 Proof of Lemma 1

We first establish that V is continuous. Let (θn, ρn) → (θ, ρ). Let us show first that V (ρ, θ) ≥
lim supn V (ρn, θn). For each n, choose xn ∈ X(ρn, θn). Without loss of generality, xn converges

to some x̃ ∈ [0, 1]. Let x̂n = max(xn − d(ρn, ρ), 0), and note that since x̂n is a feasible choice,

V (ρ, θ) ≥ v(x̂n, θn)− ρ(x̂n)

= v(xn, θn)− ρn(xn) + v(x̂n, θn)− v(xn, θn) + ρn(xn)− ρ(x̂n)

≥ V (ρn, θn) + v(x̂n, θn)− v(xn, θn)− d(ρn, ρ).

where the third inequality uses that V (ρn, θn) = v(xn, θn) − ρn(xn) and that ρ(x̂n) ≤ ρn(xn) +

d(ρn, ρ) by definition of d (see Footnote 18) and by construction of x̂n. But then, since v is

continuous with lim x̂n = limxn = x̃, and since d(ρn, ρ)→ 0, we can apply lim supn on each side

to arrive at V (ρ, θ) ≥ lim supn V (ρn, θn) as desired. Showing that V (ρ, θ) ≤ lim infn V (ρn, θn) is

similar. In particular, choose x̌ ∈ X(ρ, θ), let x̌n = max(x̌− d(ρn, ρ), 0), and observe that for all

n,

V (ρn, θn) ≥ v(x̌n, θn)− ρn(x̌n)

= v(x̌, θ)− ρ(x̌) + v(x̌n, θn)− v(x̌, θ) + ρ(x̌)− ρn(x̌n)

≥ V (ρ, θ) + v(x̌n, θn)− v(x̌, θ)− d(ρn, ρ).

Thus, since v is continuous, and since ρn → ρ, we have lim infn V (ρn, θn) ≥ V (ρ, θ). Hence, V is

continuous.

Now, let us show that X is upper hemicontinuous. To do so, let (xn, ρn, θn)→ (x, ρ, θ) where

for each n, xn ∈ X(ρn, θn). We desire to show x ∈ X(ρ, θ). So, choose any x̀, and for each n, let

x̀n = max(x̀− d(ρn, ρ), 0). Since xn ∈ X(ρn, θn), we have

(18) v(xn, θn)− ρn(xn) ≥ v(x̀n, θn)− ρn(x̀n),

for all n. We will show that this implies that v(x, θ)− ρ(x) ≥ v(x̀, θ)− ρ(x̀). Since x̀ is arbitrary,

this would establish that x ∈ X(ρ, θ).

Consider the lhs. Let us argue first that lim supn(−ρn(xn)) ≤ −ρ(x). To see this, let x̃n =

max(xn − d(ρn, ρ), 0), and note that −ρn(xn) = −ρ(x̃n) + ρ(x̃n) − ρn(xn) ≤ −ρ(x̃n) + d(ρn, ρ).

But, d(ρn, ρ) → 0 by construction, and so, since −ρ is upper semicontinuous, and since x̃n →
x, lim supn(−ρn(xn)) ≤ −ρ(x), establishing the claim. Using this, it follows that v(x, θ) −
ρ(x) ≥ lim supn(v(xn, θn) − ρn(xn)), and so, since from (18), lim supn(v(xn, θn) − ρn(xn)) ≥
lim supn(v(x̀n, θn) − ρn(x̀n)), we would be done if lim supn(v(x̀n, θn) − ρn(x̀n)) ≥ v(x̀, θ) − ρ(x̀)

or, since v is continuous and x̀n → x̀, if lim supn(−ρn(x̀n)) ≥ −ρ(x̀). But, −ρn(x̀n) = −ρ(x̀) +

ρ(x̀)− ρn(x̀n) ≥ −ρ(x̀)− d(ρn, ρ), and the result follows immediately since d(ρn, ρ)→ 0. �
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B.4 Proof of Theorem 3

Let x = xk be the quality level being modified, and let ρε be the premium schedule in which

the step in ρ at x has been replaced by a step at x + ε. Formally, let ρε(x′) = ρ(x′) for

x′ /∈ (min{x, x+ ε},max{x, x+ ε}), while ρε(x′) = ρ(x) for x′ ∈ (min{x, x+ ε},max{x, x+ ε}).

Fix (ω, F ) such that 2BRP holds and, similar to the construction involving ∆ in the previous

proof, such that neither ψ nor ψ̄ is indifferent between x and their next best choice. To lessen

the notational load, suppress (x, ω, F ) in what follows. If x is not a best response for any ψ, then

for small ε, x remains unattractive for all ψ and so the perturbation has no effect. Hence, since

W(x) = 0 by definition in this case, we have that W(x) = (Π(ρε))ε = 0.

So assume that x is a best response for some ψ. Then, by 2BRP, X(ρ, ψ) = x on a positive-

lengthed interval (ψl, ψh).58 In a minor abuse of notation, let (ψl(ε), ψh(ε)) be the nonempty

interval on which X(ρε, ψ) = x + ε, noting that ψl = ψl(0) and ψh = ψh(0). Arguing as in the

previous proof, if we let x̄h ≡ x̄(ψh, ρ) ≥ xk+1 > x, then types just to the right of ψh(ε) choose

x̄h, and similarly, types just to the left of ψl(ε) choose xl ≡ x(ψl, ρ) ≤ xk−1 < x. If ψh = ψ̄,then

ψh(ε) = ψ̄ for small ε, and so ψhε (0) = 0. Otherwise, the defining condition for ψh (ε) is

v(x+ ε, ψh(ε))− ρ(x) = v(x̄h, ψh(ε))− ρ(x̄h),

where the lhs is the payoff to ψh(ε) of choosing x+ ε and the rhs the payoff of switching to x̄h,

and so for small ε,

ψhε (ε) =
vx(x+ ε, ψh(ε))

vψ(x̄h, ψh(ε))− vψ(x+ ε, ψh(ε))
> 0,

using vψx > 0 and vx > 0. Similarly, if ψl = ψ, then for small ε, ψlε(ε) = 0, while where ψl is

interior,

ψlε(ε) =
−vx(x+ ε, ψl(ε))

vψ(x+ ε, ψl(ε))− vψ(xl, ψl(ε))
< 0.

For ε small, we then have

Π(ρε)−Π(ρ) =

∫ ψh(ε)

ψh
(S(ρ(x), x+ ε, ψ)− S(ρ(x̄h), x̄h, ψ))dG(ψ)(19)

+

∫ ψh

ψl
(S(ρ(x), x+ ε, ψ)− S(ρ(x), x, ψ))dG(ψ)

+

∫ ψl

ψl(ε)
(S(ρ(x), x+ ε, ψ)− S(ρ(xl), xl, ψ))dG(ψ),

where the first integral reflects that types in (ψh, ψh(ε)) switch their quality choice from x̄h to

x+ ε, the second integral reflects that those in (ψl, ψh) “switch” from x to x+ ε, and the third

integral reflects that types in (ψl (ε) , ψl) switch their quality choice from xl to x+ ε.

58If x was chosen by a single type ψ, then there would be three best responses at ψ, with one representing the
action taken by types just below ψ, and one the action of types just above ψ.
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Thus,

(Π(ρε))ε = ψhε (ε)(S(ρ(x), x+ ε, ψh(ε))− S(ρ(x̄h), x̄h, ψh(ε)))g(ψh(ε))

+

∫ ψh(ε)

ψl(ε)
Sx(ρ(x), x+ ε, ψ)dG(ψ)

−ψlε(ε)(S(ρ(x), x+ ε, ψl(ε))− S(ρ(xl), xl, ψl(ε)))g(ψl(ε)),

where the passing of the derivative through the integral is valid by LDCT, noting that

(20) Sx(p, x, θ) = wCvx(x, θ)− wIγI(x, θ) + (wI − wG)γGx (x, x0, θ),

where vx =
∫

(−cx)zdl is defined everywhere and bounded, and where by assumption, γI and

γG are differentiable in x for almost every θ, with uniformly bounded derivatives (recall that we

provide primitives backing this assumption).

Thus,

(Π(ρε))ε|ε=0 = ψhε (0)(S(ρ(x), x, ψh)− S(ρ(x̄h), x̄h, ψh))g(ψh)(21)

+

∫ ψh

ψl
Sx(ρ(x), x, ψ)dG(ψ)

−ψlε(0)(S(ρ(x), x, ψl)− S(ρ(xl), xl, ψl))g(ψl).

Now, if ψl is interior, then as in the previous proof,

S(ρ(x), x, ψl)− S(ρ(xl), xl, ψl) = S(x, ψl)− S(xl, ψl)

and so

−ψlε(0)(S(ρ(x), x, ψl)− S(ρ(xl), xl, ψl)) = vx(x, ψl)
S(x, ψl)− S(xl, ψl)

vψ(x, ψl)− vψ(xl, ψl)
= vx(x, ψl)rl,

while if ψl = ψ, then

ψlε(0)(S(ρ(x), x, ψl)− S(ρ(xl), xl, ψl)) = 0 = vx(x, ψl)rl,

and similarly,

ψhε (0)(S(ρ(x), x, ψh)− S(ρ(x̄h), x̄h, ψh)) = −vx(x, ψh)rh.

Also, Sx(ρ(x), x, ψ) = Sx(x, ψ)− (wI − wC)vx(x, ψ), and so, making the relevant substitutions,

(Π(ρε))ε|ε=0 = −vx(x, ψh)rhg(ψh)+

∫ ψh

ψl
(Sx(x, ψ)−(wI−wC)vx(x, ψ))dG(ψ)+vx(x, ψl)rlg(ψl).

Reinstating (x, ω, F ), we have (Π(ρε, ω, F ))ε|ε=0 = W(x, ω, F ) as asserted. But then, as above,

we can apply LDCT to see that

0 =

(∫
Π(ρε, ω, F )dG(ω, F )

)
ε

∣∣∣∣
ε=0

=

∫
(Π(ρε, ω, F ))ε|ε=0 dG(ω, F ) =

∫
W(x, ω, F )dG(ω, F ),
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where the first equality reflects that ρε is a feasible perturbation and ρ is optimal. �

B.5 Proof of Theorem 4

Since it is more intricate, we begin by showing that
∫
WdG(ω, F ) = 0. We will then use the

machinery developed to analyze
∫
VdG(ω, F ). We proceed in a sequence of steps.

Step 1 Let (ρ, χ) be optimal in the continuum. Let Pk be the subset of P that are step functions

with at most k steps. Consider the problem of the insurer restricted to Pk and has payoff function

Π̃(ρ′) = Π(ρ′) − d2(ρ, ρ′). That is, the insurer is penalized for choosing ρ′ different than ρ

according to the square of the Levy distance from ρ′ to ρ. For each k, let ρk ∈ arg maxρ′∈Pk Π̃(ρ′)

be an optimum of this problem. We claim that d(ρk, ρ) → 0. Thus, with the penalty function,

the solution to the continuum problem is well-approximated by nearby solutions of the discrete

problem.

Proof Fix δ > 0. By Lemma 2 (in Section A.5 below), for all k large enough, there is ρ∗ with at

most k steps with d2(ρ∗, ρ) ≤ δ/2 and Π(ρ∗) ≥ Π(ρ) − δ/2. But then, since ρ∗ is feasible while

ρk is optimal,

Π̃(ρk) ≥ Π̃(ρ∗) = Π(ρ∗)− d2(ρ∗, ρ) ≥ Π(ρ)− δ.

Now, since ρ is optimal in the original problem, it follows that Π(ρ) − d2(ρk, ρ) ≥ Π(ρk) −
d2(ρk, ρ) = Π̃(ρk), and so we must have d2(ρk, ρ) ≤ δ. Since δ was arbitrary, it follows that

d(ρk, ρ) → 0. Let χk be the associated allocations. That is, χk is a selection from X(·, ρk),
recalling that this is unique G-almost everywhere.

Step 2 For any given τ > 0 for any given k, and for any given x̂ offered by ρ, consider the

perturbation in which each x that is offered under ρk and is contained in (x̂ − τ, x̂ + τ) is

increased by ε. We will first calculate the value of this perturbation by breaking it up into a set

of perturbations of the type analyzed in Section A.2 and then summing as appropriate. Then, we

will consider the form of the limiting expression as one first takes k →∞ and then takes τ → 0.

Step 3 Let us begin with some definitions. For this and the next several steps, we will work

with a fixed (ω, F ) which we will suppress, and reintroduce only later when it is needed. So, for

example, we will write χ(ψ) when we mean properly χ(ω, ψ, F ). We will asssume (ω, F ) satisfies

2BRP relative to ρ.

Let ψl(τ) = inf{ψ|χ(ψ) ≥ x̂ − τ} and ψh(τ) = sup{ψ|χ(ψ) ≤ x̂ + τ}. So, [ψl(0), ψh(0)]

is the (possibly empty) interval over which the consumer chooses x̂ under χ. Let ψl,k(τ) =

inf{ψ|χk(ψ) ≥ x̂− τ} and ψh,k(τ) = sup{ψ|χk(ψ) ≤ x̂+ τ} be the analogous objects when χ is

replaced by χk.

Let {xkj }J
k

j list, in order from smallest to largest, the contracts actually chosen by (ω, F ) facing

ρk. That is, {xkj } is the range of χk. Let ψkj be the jump point from xkj to xkj+1, where we take
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ψk0 = ψ, and ψk
Jk

= ψ̄. Let

rkj (τ, k) =
S(xkj+1, ψ

k
j )− S(xkj , ψ

k
j )

vψ(xkj+1, ψ
k
j )− vψ(xkj , ψ

k
j )

.

Finally, let jl(τ, k) = min{j|xkj > x̂ − τ}, and let jh(τ, k) = max{j|xkj < x̂ + τ}. Note that this

implies that types between ψk
jl(τ,k)−1

and ψk
jh(τ,k)

choose some x ∈ (x̂−τ, x̂+τ) while other types

do not. Note also that by CMVT,

(22) rkj (τ, k) =
Sx(x, ψkj )

vψx(x, ψkj )

for some x ∈ [xkj , x
k
j+1].

Step 4 Fix some k and some j with jl(τ, k) ≤ j ≤ jh(τ, k). Consider first the perturbation of

raising xkj (and only xkj ) by ε. From (21) the derivative of payoffs with respect to this perturbation,

ignoring the impact of the perturbation on d(ρk, ρ) and evaluated at ε = 0 can be written as

πε(0, j) = −vx(xkj , ψ
k
j )rkj g(ψkj ) +

∫ ψkj

ψkj−1

Sx(xkj , ψ)dG(ψ) + vx(xkj , ψ
k
j−1)rkj−1g(ψkj−1),

where, as in the proof of Theorem 3, Sx = Sx − (wI − wC)vx does not depend on p, and so we

suppress that argument.

Step 5 Let us sum this expression over the appropriate set of indexes. For notational convenience,

abbreviate jl(τ, k) to jl, and jh(τ, k) to jh. We have

jh∑
jl

πε(0, j) =

jh∑
jl

(
−vx(xkj , ψ

k
j )rkj g(ψkj ) +

∫ ψkj

ψkj−1

Sx(xkj , ψ)dG(ψ) + vx(xkj , ψ
k
j−1)rkj−1g(ψkj−1)

)

= −vx(xkjh , ψ
k
jh)rkjhg(ψkjh)−

jh−1∑
jl

vx(xkj , ψ
k
j )rkj g(ψkj ) +

jh∑
jl

∫ ψkj

ψkj−1

Sx(xkj , ψ)dG(ψ)

+

 jh∑
jl+1

(
vx(xkj , ψ

k
j−1)rkj−1g(ψkj−1)

)+ vx(xkjl , ψ
k
jl−1)rkjl−1g(ψkjl−1).

Now, reindex the sum in the large brackets in the last line to sum from jl to jh−1, and combine

it with the sum in the second term to arrive at

O(x̂, ω, F |τ, k) =

jh−1∑
jl

(vx(xkj+1, ψ
k
j )− vx(xkj , ψ

k
j ))rkj g(ψkj ).

Note for interpretation that O captures all of the “internal” spillovers as the consumer switches

between the set of x’s in (x̂− τ, x̂+ τ). Also, recognize that by construction, xkj = χk(ψ) for ψ ∈

(ψkj−1, ψ
k
j ), and so the summation of integrals can be rewritten as

∫ ψk
jh

ψk
jl−1

Sx(χk(ψ), ψ)dG(ψ). We

thus have that the profit of the perturbation facing (ω, F ) and given τ and k is W̃(x̂, ω, F |τ, k) +

54



O(x̂, ω, F |τ, k), where

W̃(x̂, ω, F |τ, k) = −vx(xkjh(τ,k), ψ
k
jh(τ,k))r

k
jh(τ,k)g(ψkjh(τ,k)) +

∫ ψk
jh(τ,k)

ψk
jl(τ,k)−1

Sx(χk(ψ), ψ)dG(ψ)(23)

+vx(xkjl(τ,k), ψ
k
jl(τ,k)−1)rkjl(τ,k)−1g(ψkjl(τ,k)−1)).

Note for what follows that all terms of this are uniformly bounded. In particular, as in the

discussion immediately following (20), Sx is uniformly bounded, and using (22) the r terms are

bounded as well. The density g is continuous on a compact set, and so is bounded. Finally, since

vx = Ez[−cx], where cx is bounded, vx is bounded as well.

Step 6 Let

µ ≡ max
x,ψ
|vxx(x, ψ)|max

x,ψ

(
Sx(x, ψ)

vψx(x, ψ)
g(ψ)

)
<∞,

noting that µ is finite since all of the relevant objects are continuous on the compact set [0, 1]×
[ψ, ψ̄], and since vψx(x, ψ) is strictly positive. Then, for all τ and k, |O(x̂, ω, F |τ, k)| ≤ 2τµ.

Proof Using the claim at the end of Step 3,∣∣∣rkj g(ψkj )
∣∣∣ ≤ max

x,ψ

(
Sx(x, ψ)

vψx(x, ψ)
g(ψ)

)
,

and so, since

O(x̂, ω, F |τ, k) =

jh(τ,k)−1∑
jl(τ,k)

(vx(xkj+1, ψ
k
j )− vx(xkj , ψ

k
j ))rkj g(ψkj ).

we have

|O(x̂, ω, F |τ, k)| ≤

jh(τ,k)−1∑
jl(τ,k)

(xkj+1 − xkj )

max
x,ψ
|vxx(x, ψ)|max

x,ψ

(
Sx(x, ψ)

vψx(x, ψ)
g(ψ)

)
,

hence noting that xk
jh
< x̂+ τ and xk

jl
> x̂− τ .

Step 7 For any given τ and k, let ρk(ε) be the perturbation of ρk in which contracts in (x̂−τ, x̂+τ)

are increased by ε. Then,∣∣∣∣∫ W̃(x̂, ω, F |τ, k)dG (ω, F )

∣∣∣∣ ≤ 2d(ρk(ε), ρ) + 2τµ.

Proof We have that Π̃(ρk(ε)) = Π(ρk(ε))− d2(ρk(ε), ρ), and so since ρk is optimal,

0 = (Π̃(ρk(ε)))ε|ε=0 = [(Π(ρk(ε)))ε − 2d(ρk(ε), ρ)d(ρk(ε), ρ)ε]
∣∣∣
ε=0

,

where by Step 5,

(Π(ρk(ε)))ε

∣∣∣
ε=0

=

∫ (
W̃(x̂, ω, F |τ, k) +O(x̂, ω, F |τ, k)

)
dG (ω, F ) ,
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where we used LDCT to exchange the integral and the derivative, which is valid by the discussion

immediately following (23). But, (d(ρk(ε), ρ)ε
∣∣
ε=0

can take on values only in {−1, 0, 1}, since the

effect of increasing the relevant set of x’s is to either increase d at rate one, decrease d at rate

one, or leave d unchanged. Hence, by Step 6,
∣∣∣∫ W̃(x̂, ω, F |τ, k)dG (ω, F )

∣∣∣ ≤ 2d(ρk(ε), ρ) + 2τµ.

Step 8 We have limk→∞ ψ
k
jl(τ,k)−1

= ψl(τ) and limk→∞ ψ
k
jh(τ,k)

= ψh(τ).

Proof By construction, ψk
jl(τ,k)−1

= inf{ψ|χk(ψ) ≥ x̂−τ}. But ψl(τ) = inf{ψ|χ(ψ) ≥ x̂−τ}, and

the first claim follows since almost everywhere convergence of χk to χ implies that, considered as

a function of ψ alone, the sequence of increasing functions χk converges to χ in the Levy Metric.

The other case is the same.

Step 9 Consider any (ω, F ) such that x̄(ψl(τ), ρ) = x(ψl(τ), ρ) (and so both equal x̂− τ). Then,

limk→∞ x
k
jl(τ,k)−1

= limk→∞ x
k
jl(τ,k)

= x̂− τ , and

lim
k→∞

rkjl(τ,k)−1 = rl(τ) ≡ Sx(x̂− τ, ψl(τ))

vψx(x̂− τ, ψl(τ))
.

Similarly, if x̄(ψh(τ), ρ) = x(ψh(τ), ρ) (and so both equal x̂+τ), then limk→∞ x
k
jh(τ,k)

= limk→∞ x
k
jh(τ,k)+1

=

x̂+ τ , and

lim
k→∞

rkjh(τ,k) = rh(τ) ≡ Sx(x̂+ τ, ψh(τ))

vψx(x̂+ τ, ψh(τ))
.

Proof Following Step 8, and from the best response correspondence being upper hemicontinous,

we obtain that limk→∞ x
k
jl(τ,k)−1

= limk→∞ x
k
jl(τ,k)

= x̂− τ . But then,

lim
k→∞

rkjl(τ,k)−1 = lim
k→∞

S(xk
jl(τ,κ)

, ψkj )− S(xk
jl(τ,k)−1

, ψkj )

vψ(xk
jl(τ,k)

, ψkj )− vψ(xk
jl(τ,k)−1

, ψkj )
=
Sx(x̂− τ, ψl(τ))

vψx(x̂− τ, ψl(τ))
,

using CMVT. The case at ψh(τ) is the same.

Step 10 Consider any (ω, F ) such that x(ψl(τ), ρ) < x̂−τ < x̄(ψl(τ), ρ). Then, limk→∞ x
k
jl(τ,k)−1

=

x(ψl(τ), ρ), limk→∞ x
k
jl(τ,k)

= x̄(ψl(τ), ρ), and

lim rkjl(τ,k)−1 = rl(τ) ≡ S(x̄(ψl(τ), ρ), ψl(τ))− S(x(ψl(τ), ρ), ψl(τ))

vψ(x̄(ψl(τ), ρ), ψl(τ))− vψ(x(ψl(τ), ρ), ψl(τ))
.

Similarly, if x(ψh(τ), ρ) < x̂+τ < x̄(ψh(τ), ρ), then, limk→∞ x
k
jh(τ,k)−1

= x(ψh(τ), ρ), limk→∞ x
k
jh(τ,k)+1

=

x̄(ψh(τ), ρ), and

lim rkjh(τ,k) = rh(τ) ≡ S(x̄(ψh(τ), ρ), ψh(τ))− S(x(ψh(τ), ρ), ψh(τ))

vψ(x̄(ψh(τ), ρ), ψh(τ))− vψ(x(ψh(τ), ρ), ψh(τ))
.

Proof Note that by upper hemicontinuity and Step 8, any cluster point of xk
jl(τ,k)−1

is a best

response to ρ for ψl(τ) which is, by construction, at or below x̂ − τ . But then by 2BRP, it

must be that this cluster point is x(ψl(τ), ρ), and so limk→∞ x
k
jl(τ,k)−1

= x(ψl(τ), ρ). Similarly,
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limk→∞ x
k
jl(τ,k)

= x̄(ψl(τ), ρ). The claimed form for lim rk
jh(τ,k)

then follows immediately.

Step 11 Let T (τ, ω, F ) = 1 if χ(ω, ·, F ) has either a jump ending at x̂−τ or a jump beginning at

x̂ + τ , and zero otherwise. Let Q(τ) = {(ω, F )|T (τ, ω, F ) = 0}. We claim that if (ω, F ) ∈ Q(τ)

then limk→∞ W̃(x̂, ω, F |τ, k) exists, is uniformly bounded, and (in an abuse of notation) is equal

to

W̃(x̂, ω, F |τ) ≡ −vx(x̄(ψh(τ), ρ), ψh(τ))rh(τ)g(ψh(τ))

+

∫ ψh(τ)

ψl(τ)
Sx(χ(ψ), ψ)dG(ψ) + vx(x(ψl(τ), ρ), ψl(τ))rl(τ)g(ψl(τ)),

where we remind the reader that all of the objects on the rhs depend on (ω, F ).

Proof For given τ , Q(τ) is the set of (ω, F ) such that either Step 9 or Step 10 applies, so that

the various limiting objects are well-behaved. The result is then immediate from (23) and from

Steps 8-10, with LDCT telling us that the limit can be passed through the integral.

Step 12 We claim that for almost all τ , the set Q(τ) has full measure. That is, Gω,F (Q(τ)) = 1.

Proof For each (ω, F ), χ(ω, ·, F ) jumps at most a countable number of times, and so there

is at most a countable set of τ such that T (τ, ω, F ) = 1. Hence,
∫ 1

0 T (τ, ω, F )dτ = 0. But

then,
∫ (∫ 1

0 T (τ, ω, F )dτ
)
dG(ω, F ) = 0, and so

∫ 1
0

(∫
T (τ, ω, F )dG(ω, F )

)
dτ = 0. But then, for

almost all τ ∈ [0, 1],
∫
T (τ, ω, F )dG(ω, F ) = 0, or equivalently, Gω,F (Q(τ)) = 1.

Step 13 Let τ be such that Gω,F (Q(τ)) = 1. Then,
∣∣∣∫ W̃(x̂, ω, F ; τ)dG (ω, F )

∣∣∣ ≤ 2τµ.

Proof By Step 1, d(ρk, ρ) → 0. The result follows from Steps 7 and 11, once again invoking

LDCT.

Step 14 Using Step 12, choose a sequence τn → 0 where for each n, Gω,F (Q(τ)) = 1. Then, for

all (ω, F ) ∈ ∩nQ(τn) we have limn→∞ W̃(x̂, ω, F |τn) =W(x̂, ω, F ).

Proof Fix (ω, F ) ∈ ∩nQ(τn). Assume first that x(ω, ψl, F, ρ) < x̄(ω, ψl, F, ρ) = x̂. Then, for

all τn < x̄(ω, ψl, F, ρ) − x(ω, ψl, F, ρ), ψl(τn, ω, F ) = ψl(ω, F ), and so limn→∞ r
l(τn) = rl. If

instead x(ω, ψl, F, ρ) = x̄(ω, ψl, F, ρ) = x̂, then by upper hemicontinuity of the best response

correspondence, we must have that limn→∞ x(ω, ψl(τn), F, ρ) = limn→∞ x̄(ω, ψl(τn), F, ρ) = x̂,

and so again limn→∞ r
l(τn) = rl. Similarly, in both relevant cases, limn→∞ r

h(τn) = rh.

Finally, consider x(ω, ψl, F, ρ) < x̂ < x̄(ω, ψl, F, ρ). That is, at ψl, the consumer jumps from

strictly below x̂ to strictly above x̂. Then, by 2BRP, x̂ is not a best response to ψl, and so changing

x̂ a small amount has no effect on ψl, and so for n large, no effect on ψl(τn, ω, F ) = ψl(ω, F ).

Step 15 The result that
∫
WdG(ω, F ) = 0 then follows from Steps 13 and 14 and LDCT.

So, let us turn to
∫
VdG(ω, F ). Define ρk as in Step 1 above. Much as in Step 12, there is

a set Y ⊆ [0, 1] whose complement is countable, such that for each x ∈ Y and for G-almost all

(ω, F ), x̄(ω, ·, F, ρ) (or equivalently x(ω, ·, F, ρ)) does not have a jump beginning or ending at x.
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Choose any x ∈ Y . Fix (ω, F ) such that x(ω, ·, F, ρ) does not have a jump beginning or ending

at x. As in the proof of Theorem 1, also choose (ω, F ) such that neither neither ∆(ω, ψ, F, ρ) = 0

nor ∆(ω, ψ̄, F, ρ) = 0, where we make explicit the dependence of ∆ on the premium sched-

ule. Note that by continuity, it follows that for k large enough, if ∆(ω, ψ, F, ρ) > 0 then also

∆(ω, ψ, F, ρk) > 0 and hence facing ρk, (ω, F ) chooses above x regardless of ψ, and has a strict

preference for doing so. Hence, the appropriate r(x, ω, F ) is zero both for ρ and for ρk. The

situation is similar if ∆(ω, ψ̄, F, ρ) < 0.

So, in what follows, let us concentrate on the interesting case where ∆(ω, ψ, F, ρ) < 0 <

∆(ω, ψ̄, F, ρ) so that there is for large enough k an interior risk aversion parameter where

the optimal action shifts from x or below to above x. Suppressing (ω, F ), define ψk(x) as

max{ψ|x(ψ, ρk) ≤ x} and ψ∗(x) as max {ψ|x(ψ, ρ) ≤ x}. Let xk(x) = x(ψk(x), ρk) and x̄k(x) =

x̄(ψk(x), ρk), noting that because ρk is a step function, x̄k(x) > xk(x). Similarly, let x∗(x) =

x(ψ∗(x), ρ) and x̄∗(x) = x̄(ψ∗(x), ρ). Then, it follows from the upper hemicontinuity of X that

ψk(x)→ ψ∗(x), xk(x)→ x∗(x), and x̄k(x)→ x̄∗(x). To see this, assume first that x∗(x) < x̄∗(x)

so that there is a jump in x(·, ρ) at ψ∗(x). Then, x ∈ (x∗(x), x̄∗(x)) by choice of (ω, F ). Thus,

along any convergent subsequence, x∗(x) < x ≤ limk→∞ x̄
k(x) ∈ X(ψ∗(x), ρ), and so by 2BRP,

limk→∞ x̄
k(x) = x̄∗(x). Similarly, limk→∞ x

k(x) = x∗(x). If instead x∗(x) = x̄∗(x) = x then

since along any convergent subsequence, limk→∞ x
k(x) ∈ X(ψ∗(x), ρ) = {x}, we have that

limk→∞ x
k(x) = x, and similarly limk→∞ x̄

k(x) = x.

It follows that if we define

r̃k(x) ≡ S(x̄k(x), ψk(x))− S(xk(x), ψk(x))

vψ(x̄k(x), ψk(x))− vψ(xk(x), ψk(x))

then r̃k(x)→k r
∗(x), where

(24) r∗(x) ≡ S(x̄∗(x), ψ∗(x))− S(x∗(x), ψ∗(x))

vψ(x̄∗(x), ψ∗(x))− vψ(x∗(x), ψ∗(x))
or
Sx(x, ψ∗(x))

vψx(x, ψ∗(x))

as appropriate, and use CMVT when x̄k(x)− xk(x)→ 0.

Say that x′ is offered by ρk if ρk(x′′) > ρk(x
′
) for all x′′ > x′. Note that a non-offered

contract is never a best response for the consumer, since they can have more coverage at the

same price. Let x̃k(x) be the largest quality offered by ρk that is at or below x. Let us show

that ψk(x̃k(x)) = ψk(x). To see this, recall that ψk(x) = max{ψ|x(ψ, ρk) ≤ x} and ψk(x̃k(x)) =

max{ψ|x(ψ, ρk) ≤ x̃k(x)}. Thus, ψk(x̃k(x)) ≤ ψk(x). Assume ψk(x̃k(x)) < ψk(x). Then, for

ψ ∈ (ψk(x̃k(x)), ψk(x)) we have that x(ψ, ρk) > x, since x̃k(x) is the largest offered quality at or

below x and by definition of ψk(x̃k(x)), any ψ > ψk(x̃k(x)) has a lowest best response strictly

above x̃k(x). Hence, since there are no contracts offered between x̃k(x) and x, it is strictly above

x. But x(ψ, ρk) ≤ x by definition of ψk(x), which is a contradiction. Thus, ψk(x̃k(x)) = ψk(x),

and so

−r̃k(x)g(ψk(x)) + 1−G(ψk(x)) = −r̃k(x̃k(x))g(ψk(x̃k(x))) + 1−G(ψk(x̃k(x))).
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Then, reinstating (ω, F ), we have by the result for the finite case that∫
[−r̃k(x̃k(x), ω, F )g(ψk(x̃k(x), ω, F )) + 1−G(ψk(x̃k(x), ω, F ))]dG(ω, F ) = 0,

and so ∫
[−r̃k(x, ω, F )g(ψk(x, ω, F )) + 1−G(ψk(x, ω, F ))]dG(ω, F ) = 0.

But, the integrand in this expression is uniformly bounded, and so, by LDCT, we have that∫
V(x, ω, F )dG(ω, F ) =

∫
[−r∗(x, ω, F )g(ψ∗(x, ω, F )) + 1−G(ψ∗(x, ω, F ))]dG(ω, F ) = 0,

as claimed. �

B.6 Ironing and the One-Contract Case

We asserted in Section 3.5 that the optimality condition that obtains from the perturbation of

one contract x reduces, in the one-dimensional case where only ψ is stochastic, to the standard

ironing condition. In this case the optimality condition is simply W = 0, and so for each offered

x > x0,

(25) − vx(x, ψh)rhg(ψh) +

∫ ψh

ψl
(Sx(x, ψ)− vx(x, ψ))g(ψ)dψ + vx(x, ψl)rlg(ψl) = 0.

From the perturbation of the price schedule, we obtain in this case that V = 0, or rhg(ψh) =

1−G(ψh) and rlg(ψl) = 1−G(ψl), and thus (25) becomes

(26) − vx(1−G(ψh)) +

∫ ψh

ψl
(Sx(x, ψ)− vx(x, ψ))g(ψ)dψ + vx(x, ψl)(1−G(ψl)) = 0.

Integrating by parts −
∫ ψh
ψl

vxgdψ and then multiplying and dividing the integrand by g yields

−
∫ ψh

ψl
vx(x, ψ)g(ψ)dψ = (1−G)vx(x, ψ)|ψ

h

ψl
−
∫ ψh

ψl
vxψ

1−G
g

gdψ

= (1−G(ψh))vx(x, ψh)− (1−G(ψl))vx(x, ψl)−
∫ ψh

ψl
vxψ

1−G(ψ)

g(ψ)
g(ψ)dψ.

Inserting this expression into (26) and rearranging yields

∫ ψh

ψl

(
Sx(x, θ)− vxψ

1−G(ψ)

g(ψ)

)
g(ψ)dψ = 0,

which is the standard optimality condition in the ironing case.

Consider now the multidimensional case with just one contract (p, x), as in Veiga and Weyl
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(2016). In this case, simple algebra reveals that W reduces to

(27) W(x, ω, F ) = −
∫ ψ̄

ψl
γIx(x, ψ)dG(ψ) + vx(x, ψl)

p− γI(x, ψl)
vψ(x, ψl)− vψ(x0, ψl)

g(ψl),

where p = v(x, ψl)− v(x0, ψl) since type (w,ψl, F ) is indifferent between choosing x and x0.

In turn, V reduces to

(28) V(x, ω, F ) = 1−G(ψl)− p− γI(x, ψl)
vψ(x, ψl)− vψ(x0, ψl)

g(ψl).

It is easy to show that
∫
V(x, ω, F )dG(ω, F ) = 0 is the same as the first-order condition with

respect to p in Veiga and Weyl (2016), and is given by

(29) p−
∫
γI(x, ψl)dR(ω, F, x, x0) =

N

s
,

where N =
∫

(1−G(ψl|ω, F ))dG(ω, F ) is the total mass of types served by the firm, s is the mass

of types that switch from x to outside option x0, given by

s =

∫
g(ψl(ω, F )|ω, F )

vψ(x, ψl(ω, F ), ω, F )− vψ(x0, ψl(ω, F ), ω, F )
dG(ω, F ),

and R is the cdf of types that switch, and can be obtained by integrating its density r given by

r(ω, F, x, x0) =

g(ψl(ω,F )|ω,F )
vψ(x,ψl(ω,F ),ω,F )−vψ(x0,ψl(ω,F ),ω,F )

s
.

From (29), p =
∫
γIdR+(N/s). Inserting this expression for p into (27), integrating the resulting

expression with respect to ω, F , and manipulating yields that
∫
WdG = 0 can be written as

follows:

0 = −
∫
γIx(x, ψl)

1−G(ψl|ω, F )

N
dG(ω, F ) +

∫
vx(x, ψl)dQ(ω, F, x, x0)− covr(vx, γ

I)
N
s

,

where covr(vx, γ
I) is the covariance between vx and γI calculated using the density r of switching

types, and is the same as the first-order condition with respect to x in Veiga and Weyl (2016).

B.7 Incentives to Exclude and Screen

We mentioned in Section 3.6 that the optimality condition of our main perturbation can be used

to shed light on the insurer’s incentives to exclude types from any insurance above x0, and also

to screen types. Here we present the analytical support for that comment.

Incentives to Exclude. By varying the weights w, our optimality conditions highlight the

differential incentives of insurers with different objectives. We now show that the monopolist has

a greater incentive to exclude consumers than the social planner. Fix a level x0 of government-

provided insurance. We start with the incentives of a monopolist insurer. To simplify notation,
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assume that any consumer who is taking the outside option has the lowest offered level of incre-

mental coverage as their second best choice, and denote this contract by x1. Fix and suppress

x0, ω, and F , and let the marginal type who is excluded by the monopolist be ψ∗ (since vxψ > 0,

the set of types excluded is an interval beginning at ψ = 0). Then, since for the monopolist,

wI = 1 while wC = wG = 0, it is easy to show that V, the effect on payoffs of an increase in the

premium of all contracts x1 and above (and hence of moving some people from an inside option

to the outside option x0) is given by

VM = −ρ(x1)− (γI(x1)− γG(x1, x0))

vψ(x1, ψ∗)− vψ(x0, ψ∗)
g(ψ∗) + 1−G(ψ∗),

where the superscriptM stands for monopolist. Optimal exclusion requires that
∫
VM (x0, ω, F )dG (ω, F ) =

0.59 The term ρ(x1)− (γI(x1)− γG(x1, x0)) represents the profit the insurer was making on con-

sumers it now excludes. The other parts of the first term reflect the speed at which types are

excluded as premiums are raised. The last part of the expression 1−G is the impact on revenue

from inframarginal consumers.60

From a regulator’s perspective, is the monopolist excluding too little or too much? To answer

this question, consider the setting where wI = wC = 1 ≤ wG, so that the regulator equally

weights consumer surplus and monopolist profits, and respects any excess cost of public funds.

Under these weights, the effect of increasing premiums on all contracts x1 and above is

VG = −ρ(x1)− (γI(x1)− γI(x0))− (wG − 1)(γG(x1, x0)− γI(x0))

vψ(x1, ψ∗)− vψ(x0, ψ∗)
g(ψ∗),

where the superscript G stands for “government”, and ρ(x1) − (γI(x1) − γI(x0)) measures the

change in consumers’ willingness to pay less the cost of serving them, while (wG−1)(γG(x1, x0)−
γI(x0)) measures the cost of increased government spending.61 Note that γG(x1, x0) ≥ γG(x0, x0) =

γI(x0).

Comparing the impact of incremental exclusion from the perspective of the monopolist versus

the utilitarian regulator yields,

(30) VM − VG ≡ −wG γG(x1, x0)− γI(x0)

vψ(x1, ψ∗)− vψ(x0, ψ∗)
g(ψ∗) + 1−G(ψ∗).

The first term is negative and reflects the social cost of increased government spending that

59For a monopolist, S(x, θ) ≡ v(x, θ)− γI(x, θ) + γG(x, x0, θ), and so

S(x1, ψ∗)− S(x0, ψ∗) = v(x1, ψ∗)− γI(x1) + γG(x1, x0)−
(
v(x0, ψ∗)− γI(x0) + γG(x0, x0)

)
.

But, v(x1, ψ∗) − v(x0, ψ∗) = ρ(x1) and γG(x0, x0) = γI(x0), and so S(x1, ψ∗) − S(x0, ψ∗) = ρ(x1) − γI(x1) +
γG(x1, x0), and the expression follows by substituting into (7).

60In the case where ω and F are not stochastic (the one-dimensional case), optimal exclusion requires that VM = 0,
which rearranges to the classic “virtual profit” condition.

61In this case, S =v − γI − (wG − 1)γG, and so since v(x1, ψ∗)− v(x0, ψ∗) = ρ(x1),

S(x1, ψ∗)− S(x0, ψ∗) = ρ(x1)− (γI(x1)− γI(x0))− (wG − 1)(γG(x1, x0)− γI(x0))

and the expression for V2,G follows.
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arises when consumers receive higher coverage. The second term is positive and reflects that

the monopolist values transfers from the consumer while the regulator is indifferent. Overall

the comparison is ambiguous. Because γG depends on consumers’ behavior in their chosen

contract (in this case x1), the monopolist in effect does not bear the full cost of additional

healthcare spending due to higher coverage. This subsidy encourages the monopolist to serve

more consumers than it otherwise would. However, under the alternative rule where government

spending depends only on consumers’ behavior had they chosen x0—i.e., when γG is fixed at

γI(x0)—then the first term cancels out, and the regulator unambiguously wants the monopolist

to exclude fewer consumers.

Incentives to Screen. Marone and Sabety (2022) provide an empirical illustration where

the social planner chooses to pool all consumers in a single contract, which is echoed in our

numerical analysis. We now provide a theoretical example, albeit in a one-dimensional setting, to

illustrate how nonresponsiveness in the planner’s problem can drive this outcome, as well as how

it contrasts with the outcome that would be chosen by a monopolist.62 We must limit attention

to the one-dimensional problem to gain analytical tractability. Specifically, we assume that the

consumer’s only private information is ω, and that the distribution of ψ and F is degenerate. We

also restrict attention to linear out-of-pocket cost functions of the form c(a, x) = (1 − x)a, and

assume that b(a, l, ω) ≡ b̂(a− l, ω).63 Finally, for simplicity, we assume that γG = 0 and that the

social planner assigns the same weight to the insurer and to the consumer.

The assumptions on c and b yield a very convenient expression for v(x, ω) (we omit ψ and

F from θ since they are fixed in this section). To see this, note first that from b̂a(a − l, ω) =

ca(a, x) = 1− x, we obtain a∗(l, x, ω) = l+ ϕ(1− x, ω), where ϕ is the inverse of b̂a with respect

to its first argument. Inserting the optimal choice of a into v we obtain

v(x, ω) = b̂(ϕ(1− x, ω), ω)− (1− x)ϕ(1− x, ω)− 1

ψ
log

∫
eψ(1−x)ldF (l),

and

(31) vx(x, ω) = ϕ(1− x, ω)− 1

ψ
log

∫
e−ψldF (l),

which yields vxω = ϕω(1− x, ω) > 0, as discussed in Technical Remark 5.

Consider first the social planner’s problem without adverse selection (the ‘first-best’ case).

Since a− c(a, x) = xa in this case, the planner solves, for each ω,

max
x∈[0,1]

(
v(x, ω)− x

∫
a∗(l, x, ω)dF (l)

)
.

Using a∗(l, x, ω) = l + ϕ(1 − x, ω) and (31), we obtain that the cross-partial derivative of the

objective function with respect to (x, ω) is xϕ(1−x)ω(1−x, ω).64 One can show that this is strictly

62Nonresponsiveness holds when, as a function of the consumer’s type, the allocation of contracts to types that is
incentive compatible has the opposite monotonicity property than the efficient allocation.

63Under this out-of-pocket cost functions, we know that vxω > 0, and in the parametrization used in the numerical
simulations we obtain closed-form solutions for a∗ and z.

64To see this, note that vxω = ϕω(1− x, ω),
∫
a∗ωdF = ϕw, and

∫
a∗xωdF = −ϕ(1−x)ω. Inserting these expressions
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negative for all x > 0 if b̂aω/b̂aa is strictly decreasing in a, a condition that is satisfied by the

canonical example.65 By a standard monotone comparative statics argument, this implies that

the efficient allocation of contracts to types in the first best is decreasing in ω.

But in this case a necessary condition for χ(·) to be incentive compatible is that it be increasing

in ω.66 It follows from this conflicting monotonicity that when ω is the only source of private

information, the social planner’s optimal allocation of contracts to types is “flat.”

Proposition 5 (Social Planner and Pooling) Assume that only ω is private information,

that b(a, l, ω) = b̂(a − l, ω), that baω/baa is strictly decreasing in a for each (l, ω), and that

c(a, x) = (1− x)a. Then the optimal χ for the social planner entails complete pooling of types.

Consider now the profit-maximizing monopolist’s problem. After some algebra that is standard

in screening with one-dimensional private information, the monopolist’s problem becomes

max
χ(·)

(∫ (
v(χ(ω), ω)− x

∫
a∗(l, χ(ω), ω)dF (l)− vω(χ(ω), ω)

1−G(ω)

g(ω)

)
dG(ω)− v(x0, ω)

)
s.t. χ increasing.67 If we ignored the monotonicity constraint, we could maximize, for each ω,

(32) v(x, ω)− x
∫
a∗(l, x, ω)dF (l)− vω(x, ω)

1−G(ω)

g(ω)

with respect to x. If this expression had a strictly negative cross-partial derivative with respect

to (x, ω), then once again we would have complete pooling.68 But, unlike the planner’s objective

function, whose cross-partial is strictly negative when b̂aω/b̂aa is strictly decreasing in a, we have

an extra term, −vω(x, ω)((1−G(ω))/g(ω)). As a result, the cross-partial derivative of (32) is

(33) xϕ(1−x)ω − vxωω
1−G
g
− vxω

(
1−G
g

)
ω

= xϕ(1−x)ω − ϕωω
(

1−G
g

)
− ϕω

(
1−G
g

)
ω

.

To see that this expression need not be strictly negative, assume b̂(a− l, ω) = a− l−(1/(2ω))(a−
l)2, and that g is a strictly increasing density with g′ > 0. Then one can show that (33) is actually

strictly positive, which implies that the monopolist completely sorts types at the optimal menu,

providing a drastic contrast with the social planner’s solution.69

into the cross-partial derivative of the objective function we obtain vxω −
∫
a∗ωdF − x

∫
a∗xωdF = xϕ(1−x)ω.

65To see this, from b̂a(ϕ(1− x, ω), ω) = 1− x, differentiate twice and use the derivative of the inverse function ϕ
to obtain ϕ(1−x)ω = −(b̂3aa)−1(b̂aaω b̂aa − b̂aaab̂aω), and this is strictly negative if the term in parenthesis is, that

is, when b̂aω/b̂aa is strictly decreasing in a. If b(a, l, ω) = a − l − (1/(2ω))(a − l)2, then baω/baa = −(a − l)/ω,
which is clearly strictly decreasing in ω.

66The standard incentive compatibility characterization states that χ is incentive compatible if and only if it is
increasing and the consumer’s indirect utility when her type is ω, U(ω) = v(χ(ω), ω) − ρ(χ(ω)) can be written
as U(ω) = U(ω) +

∫ ω
ω
vω(χ(s), s)ds.

67The algebraic steps are as follows. First, use the incentive compatibility characterization in Footnote 66 to write
the monopolist’s problem as maxρ(χ(·)),χ(·)

(∫ (
ρ(χ(ω))− x

∫
a∗(l, χ(ω), ω)dF (l)

)
dG(ω)

)
subject to χ increasing

and ρ(χ(ω)) = v(χ(ω), ω) − v(x0, ω) −
∫ ω
ω
vω(χ(s), s)ds, where we have set U(ω) = v(x0, ω), which is optimal

for the monopolist. Second, insert the expression for ρ into the objective function. Finally, integrate by parts a
double integral that appears after the replacement and rearrange.

68The solution to the relaxed problem (which ignores the monotonicity constraint) would be decreasing, and thus
there would be a need for ironing, which would yield a flat allocation of contracts to types.

69To see that (33) is strictly positive, note that from b̂a = 1− x we obtain ϕ(1− x, ω) = ω(1− (1− x)), and thus
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B.8 Computational Details

Simulated Population of Consumers. We simulate a population of consumers using the

parameter estimates reported in Column 3 of Table 3 and Appendix Table A.8 of Marone and

Sabety (2022). We first construct a population of households in terms of simple demographic

characteristics (such as age and gender), and then construct each household’s type θ using the

reported parameters. As in Marone and Sabety (2022), we model a household as a group of

individuals, each of whom is characterized by an age, a gender, and a health risk score.

We construct a population of households to match characteristics of the U.S. population. We

start the construction of each household with a “head of household.” This person is female with

50 percent probability and has a uniform distribution of age between 22 and 65. We assume

that 90 percent of households have a spouse present, and when present, that the spouse is of the

opposite gender to the head of household. Spouses draw an age from a normal distribution with

mean equal to the age of the head of household and a standard deviation of 4, subject to bounds

between 22 and 65. We further assume each household has between 1 and 4 children, where each

child exists with 15 percent probability, independently of one another and of the presence of a

spouse. Conditional on existing, each child is female with 50 percent probability and draws their

age from a uniform distribution between 0 and 18. Finally, we assume that all individuals draw

a risk score from a log-normal distribution with mean positively related to age, such that for

individual i: log(riskscorei) ∼ N(agei20 , 1). We censor the right tail of the risk score distribution

such that no individual can have a risk score that is more than five standard deviations above the

uncensored mean. Our baseline population contains 10,000 households. Increasing the number

of households does not change our results.

With this simulated population in hand, we then apply the parameter estimates to construct

θ = (ψ, ω, F ) for each household. We make one adjustment, which is to cap the risk aversion

parameter at a value of 5.70 Summary statistics on the population distribution of demographics

and resulting household types are reported in Table 2. In addition, the joint distributions of

various household characteristics and households’ willingness to pay (for full insurance relative

to Catastrophic coverage) are shown in Online Appendix Figure B.1.

Numerical Algorithm for Computing Optimal Menus. We calculate optimal premium

schedules numerically given a fixed set of potential contracts {xk}Kk=0. Note that we cannot

calculate optimal menus in the case of a continuum of contracts because there is not a closed

form solutions for key required objects: consumer utility v(θ, x) and insurer costs γI(θ, x). These

objects must therefore be pre-calculated for each consumer type θ and each pre-specified contract

x. The largest number of contracts on which we calculate optimal menus is 65. A powerful im-

plication of our theoretical convergence result is that this approach approximates the continuum

case.

Our numerical algorithm for finding optimal prices mirrors the logic of the perturbation ar-

(33) is equal to −x− 0 + x((g′/g)((1−G)/g) + 1), which is strictly positive if g′ > 0.
70We express monetary amounts in thousands of dollars, so dividing our coefficients of absolute risk aversion by

1,000 makes them comparable to other settings where monetary amounts are measured in dollars.
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gument underlying our necessary conditions stated in Theorem 1. The algorithm proceeds as

follows. Start from a candidate price schedule ρ(x), and let pk = ρ(xk) − ρ(xk−1) be the incre-

mental premium between adjacent contracts. Starting from the first increment k = 1, consider

a small perturbation to the incremental premium pk, holding all other incremental premiums

fixed. According to Theorem 1, at any optimal menu, this perturbation should not have a first

order effect on the insurer’s payoff. Use an unconstrained optimizer to find a locally optimal p1,

around which the insurer’s payoff cannot be improved.71 Proceed to the second increment k = 2

and repeat this process, now optimizing over p2, holding all other incremental premiums fixed.

Proceed through all remaining increments up to K. At this point, restart at k = 1, and repeat

the entire loop again. Once payoffs are unresponsive (within some tolerance) to small perturba-

tions at every incremental premium k, a price schedule that fulfills the necessary conditions for

local optimality has been found.

Given the complexity of this nonlinear optimization problem, the standard caveat applies that

it is impossible to guarantee that a local optimum is a global optimum. In principle, this is exactly

the same roadblock that prevents us from analytically deriving sufficient conditions for optimality

in the true problem. We calculate local optima starting from the solution to the simplified version

of the problem, as well as starting from 100 random starting values. The random starting values

in general do not do better than starting from the solution to the simplified problem.

B.9 Derivation of BFIB

Using the simplified version of the problem, we can derive an analytical expression for the local

impact of taxes or subsidies in a monopoly market. To begin, fix a single incremental coverage

level of interest and suppress k. Define a subsidy scheme σ(q|s), where s ∈ R is a generosity

parameter and σ represents the total dollar amount of subsidies paid to the monopolist when

it serves q consumers. Assume that s = 0 corresponds to no subsidies (σ(q|0) ≡ 0) and that

higher s corresponds to higher subsidies both as an absolute and at the margin (σs(q|s) ≥ 0 and

σqs(q|s) ≥ 0). Positive s therefore corresponds to a subsidy, while negative s corresponds to a

tax (we will use the generic term subsidy throughout). A linear subsidy scheme (that is, linear

in the number of consumers served) would be given by σ(q|s) = sq.

Given a subsidy function σ(q|s), the goal is to find a regulator’s optimal subsidy level s. To

this end, denote the optimal quantity of consumers served by the monopolist facing subsidy level

s is given by

q(s) = arg max
q

(P (q)q − C(q) + σ(q|s)) .

We assume the subsidy function σ has enough regularity that q(s) is well-defined and continuously

differentiable. Suppose the regulator has an objective function that takes the same form as an

insurer’s—as given by equation (3)—just with different weights. Suppose the regulators objective

weights are w̃ = (w̃C , w̃I , w̃G). The payoff to the regulator of implementing subsidy level s in a

71We use the commercial optimization packages available through MATLAB.
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monopoly insurance market is then given by

(34) w̃C
∫ q(s)

0 P (q′)dq′ + (w̃I − w̃C)P (q(s))q(s)− w̃IC(q(s)) + w̃Iσ(q(s)|s)

Benefit of subsidy, β(s)

− w̃Gσ (q(s)|s)
Cost of subsidy

,

Let bang for incremental buck (BFIB) be defined as βs(s)/(σ(q(s)|s))s, where (·)s denotes the

total derivative with respect to s. It is the marginal benefit the regulator realizes on an extra

dollar spent on subsidies starting from level s. Note that the marginal cost of subsidies is linear

in the weight placed on government spending, w̃G. Assuming that the regulator’s problem of

choosing s is characterized by the first-order condition, comparing BFIB to w̃G therefore tells

us whether the regulator wishes to increase or decrease the subsidy. If BFIB > w̃G, then the

marginal benefit of an increase in subsidy level exceeds its marginal cost, and the regulator will

optimally increase s. If BFIB < w̃G, then the opposite is true, and the regulator optimally

reduces the subsidy.

Differentiate the regulator’s benefit function β(s), we obtain

βs(s) = qs(s)
(
w̃CP (q(s))−w̃IMC(q(s))+(w̃I−w̃C)MR(q(s)

)
+w̃I

(
σq(q(s)|s)qs(s)+σs(q(s)|s)

)
.

We can simplify by applying the identity MR(q(s)) = MC(q(s)) − σq(q(s)|s), which holds by

the optimality of q(s). After simplification, we can rewrite βs(s) as follows:

βs(s) = qs(s)w̃
C (P (q(s))−MC(q(s)) + σq(q(s)|s)) + w̃Iσs(q(s)|s).

Hence, BFIB is given by the following expression

BFIB =
qs(s)w̃

C
(
P (q(s))−MC(q(s)) + σq(q(s)|s)

)
+ w̃Iσs(q(s)|s)

σq(q(s)|s)qs(s) + σs(q(s)|s)
.

We can simplify further by differentiating the identity MR(q(s))−MC(q(s)) + σq(q(s)|s)) = 0.

This yields an expression for the marginal impact of the subsidy policy on the monopolist’s

chosen quantity:

qs(s) =
σqs(q(s)|s)

MCq(q(s)) + σqq(q(s)|s)−MRq(q(s))
,

which is positive (since the numerator is positive by assumption and the denominator is positive

since it is equal to the negative of the second-order necessary condition). The monopolist therefore

always increases quantity in response to increased subsidies.

Inserting qs(s) into the expression for BFIB yields

BFIB =
σqs(q(s)|s)w̃C P (q(s))−MC(q(s))+σq(q(s)|s)

MCq(q(s)|s)+σqq(q(s)|s)−MRq(q(s)|s) + w̃Iσs(q(s)|s)

σq(q(s)|s) σqs(q(s)|s)
MCq(q(s))+σqq(q(s)|s)−MRq(q(s)|s) + σs(q(s)|s)

.

Given a linear subsidy σ(q|s) = qs and regulatory objective weights w̃ = (1, 0, 1), BFIB reduces
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to

BFIB =

P (q(s))−MC(q(s))+s
MCq(q(s))−MRq(q(s))

s
MCq(q(s))−MRq(q(s))

+ q(s)
.

We can use this expression to analyze the special case of whether to subsidize (or tax) at all.

Consider the first dollar of subsidy by setting s = 0, so that q(0) = qm (the monopolist’s optimal

quantity). In this case, the expression simplifies to:

BFIB =
1

qm
P (qm)−MC(qm)

MCq(qm)−MRq(qm)
,

and BFIF can be easily interpreted. First, 1/qm is the amount by which the first dollar spent

on subsidies lowers the monopolist’s effective marginal cost curve. Next, 1/(MCq −MRq) is the

amount by which a decrease in marginal cost leads the monopolist to increase quantity. Finally,

P −MC reflects the effect of a change in quantity on consumer surplus. We can evaluate BFIB

numerically on each incremental coverage level at the monopolist’s optimal allocation. In each

case, we find that it falls below one, meaning that starting from zero subsidies, the regulator

would—at the margin—be better off taxing incremental coverage, consistent with our numerical

results.72

72On the margin between full insurance and Gold, BFIB does not exist because qm is zero. On the margins between
Gold and Silver, Silver to Bronze, and Bronze to Catastrophic, BFIB is 0.33, 0.34, and 0.30, respectively.
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Figure B.1. Distribution of Household Types in Simulated Population
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Percentile of households by willingness to pay
for full insurance relative to Catastrophic coverage

Notes: The figure shows the distribution across households of (a) the risk aversion parameter, (b) the moral hazard
parameter, (c) households’ expected total healthcare spending under the Catastrophic contract, (d) households’
variance of out-of-pocket spending under the Catastrophic contract, (e) the average age of adults in the household,
and (f) the number of individuals in the household. An adult is anyone 18 and older. Households are arranged on
the horizontal axis in order of their willingness to pay for full insurance relative to the Catastrophic contract. Each
dot represents a household, for a 25 percent random sample of households. The line in each panel is a connected
binned scatter plot, representing the mean value of the vertical axis variable at each percentile of willingness to
pay.
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Figure B.2. Optimal Allocations as Density of Contract Space Increases

(a) Social Planner, n = 3 (b) Monopolist, n = 3

(c) Social Planner, n = 5 (d) Monopolist, n = 5

(e) Social Planner, n = 17 (f) Monopolist, n = 17

(g) Social Planner, n = 33 (h) Monopolist, n = 33

(i) Social Planner, n = 65 (j) Monopolist, n = 65

Notes: The figure shows the percentage of consumers allocated to each contract under the optimal menus chosen
by a social planner and a monopolist as the density of the contract space increases. The gray bars identify the
set of potential contracts available to the menu designer, while the blue bars show the actual allocations. The
left-hand side panels show the allocations chosen by the social planner, while the right-hand side panels show the
allocations chosen by the monopolist. The rows correspond to 3, 5, 17, 33, and 65 potential contracts, respectively.
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Table B.1. Contract-by-Contract Markups

Average cost Premium
$000s $000s Premium / Average cost

Scenario Brnz. Slvr. Gold Full Brnz. Slvr. Gold Full Brnz. Slvr. Gold Full

Social planner 0.16 4.22 0.16 0.34 0.77 3.27 2.17 0.18
Social planner, 25% ECPF 0.13 1.02 4.86 9.78 1.49 2.80 4.64 7.10 11.52 2.75 0.95 0.73
Monopolist 0.44 2.34 5.91 2.01 4.13 6.49 9.01 4.57 1.76 1.10
Competitive equilibrium 0.97 3.42 5.92 8.41 0.97 3.42 5.92 8.41 1.00 1.00 1.00 1.00

Notes: The table shows average costs, premiums, and markups (the ratio of premium to average cost) at the
optimal menu of our three focal insurers as well as at the competitive equilibrium. Costs are incremental relative
to the Catastrophic contract, and note that the premium of the Catastrophic contract is always zero.
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